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t Princeton VLS] Project: Semi-Annual Report
’ » 1
#3-.'3 R. J. Lipton
Dol
g 1. Introduction
bk ‘ We have been officially underway at Princeton since August; hence, this
. xg report actually covers about three months of activity. There are three major
;;;, aspects to our project: ALl, Census, and Testing.
L2y
o= 2 AU
4 All, our procedural language for VLS] design and layout, is now up and run-
e ning [4]. It has already been used by Dobkin and Drysdale to redesign a divider

they previously designed on a graphics system at Xerox. In addition, LaPaugh's
VLSI class has already used ALl for their VLSI] projects. Dobkin is currently
beginning to explore ways to create graphics interfaces to the ALl system.

ALIZ the second version of our layout system is coming along well. Valdes
has already fully defined the new language and implementation is now under way
t [7]. ALI2 differs from ALl in two essential ways. First, it is based on. what we
believe to be a much cleaner setl of primitive and constructs. For instance, it
does not have the "shuffle property” so many design languages do: by this we
mean that the order of placement commands does matter. Second, ALI2 gen-
erates far fewer constraints than AL] does. This is of course critical if such con-
straint based systems are to be able to handie large complex layouts.

1 Plans are already underway on how to best exploit the unique features of
ALI2. Ramachandran has just finished a study o’ the cost of increasing the size
of drivers in order to speed up circuits [5]. She assumes that sizes of transis-
tors can be changed but that the layout cannot be restructured. Under these
assumptions she can tightly bound the worst case cost in terms of area of mak-
ing the delays on all wires a “constant”. Since ALI2 allows a designer to easily

‘ change the sizes of wires and transistors we feel that such results are important.
Already it is common place for designers to size transistors for speedup in an ad
hoc way [6].

Also Vijayan and Wigderson have isolated a number of new layout problems
that arise naturally when one considers the implementation of ALI2 [8,9]. All
these problems concern the embedding of “rectilinear” graphs. These are

' graphs where each edge is connected to the “left”, “top”, "right”,or "bottom" of
each vertex. They are currently exploring the computational complexity of a
variety of layout problems here. For example, they can quickly recognize those
graphs that have planar embeddings: moreover, they can also quickly find such
embeddings when they exist.

&
*

3

-
ey

‘ 3. Census
The census language is a new way to express parallel algorithms that use a
8 *’d{ fairly loosely coupled method of control [3]). Work is under way to understand
e the limits and powers of such languages. North is beginning to identify those
> problem areas that can be successfully mapped onto the census language. We
.,!r., are ailso thinking about implementations of census, but no implementation is yet
. started.

o |

3 Census has been looked at from a theory point of view by Chandra, Fortune.
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and Lipton [2]. They have been able to get tight upper and lower bounds on the
size of boolean circuits with unbounded fan-in. Unbounded fan-in circuits not
only model an important class of census computations but they also model cir-
cuits such as PLA's. For example, it is possible to construct a circuit that adds
two n-bit numbers in constant time and whose size is approximately linear in n.
We are beginning to examine the feasibility of using these ideas in real VLSI
designs.

4. Testing
Our work on testing divides into two areas. Arden is beginning to work on

Jirst silicon testing especially with respect to scanning electron microscopes

(SEM). He plans to be on leave this spring and work with the SEM group in Mun-
ich. In the future we expect that we will be able to use a SEM that the Princeton
Siemens group is about to get.

LaPaugh and Lipton have begun to work in the area of production testing.
They have already successfully been able to completely characterize the testa-
bility of "prefix computations”. Prefix computations arise naturally in a number
of places: for instance, in carry-look-ahead adders {1]. Such characterizations
link the self-test of these computations with classic semi-group theory.

Also work is under way on a new self-test strategy which we call "toggic
search”. This method first generates the vector of all 0's; next it randomly
changes one of the 0's to a 1; it repeats this until all 0's have been toggled to i's,
then the entire process begins again. Toggle search and its generalizations are
well suited to many test environments where one bit of an input can be changed
more quickly than a whole input vector. Already we have empirical evidence of
the superiority of toggle search over other methods. Colleagues at 1BM Watson
Research have tested toggle on examples of about one thousand gates and found
that it is about three times faster than standard methods. For example, it took
about 600 thousana vectors versus 1.8 million to achieve 100X fault coverage on
one piece of random control logic. We plan further experiments to further vali-
date these results.

Finally, we have also found a way to transform any combinational logic cir-
cuit into one that is easy to test. Here by easy to test we mean that we can
detect a very large class of physical fauits. The penaity for this transformation
is that the number of gates can increase by es much as 100%. We plan this com-
ing year to carefully explore this new method. In particular, we wish to both
understand the cost of the method and the class of faults it can and cannot
detect.

(2] Brent, RP. Kung. HT., "The Chip Complexity of Binary Arithmetic,"
Proceedings of the Tuelfth Annual ACM Symposium on Theory of Comput-
ing, ACM (New York). April, 1880.

[2) Chandra, A., Fortune, S., Lipton, R.J. - in preparation.

[3] Lipton, RJ., Valdes, J., "Census Functions: an Approach to VLS! Upper
Bounds,”” Proceedings 22nd /EEE Foundations of Computer Science Nash-
ville, Tennessee, October, 1881.

[4] Lipton, RJ., North, S.C., Sedgewick, R., Vijayan, G., "ALl: A Procedural Lanu-
gage to Describe VLS] Layouts,” Proceedings of the Nineteenth ACM-/EEE
Dezign Automation, las Vegas, Nevada, June, 1982.
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) (5] Ramachandran, V., "On Driving Many Long Lins in a VLSI Layout, " to appear
108 in Proceedings of the 23rd Foundations of Computer Science, Chicago, llli-
e nois, 1882.

t (6] Shoji. M., “Electrical Design of BELLMAC-32A Microprocessor” in Proceed-

ings of 1CCC-82, New York, New York, 1882.

f»' © [7] Valdes, J., "ALIZ Implementation Notes,' - unpublished manuscript.
. < [8] Vijavan, G.. "Completeness of VLSI Layouts,” VLS Memo #1, Department of
EECS, Princeton University.

[9] Vijayan, G., Wigderson, A., ''Rectilinear Graphs and their Embeddings."” - in
preparation.
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%ﬁl VLSI Layout as Programming
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. ¢ Richard J. Liptonst
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’ Gopalakrishnan Wiayant
i t {Department of Electrical Engineering and Computer Science
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28 Princeton, NJ
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4
% Abstract: The first component of a VLSI design environment being built at Princeton is

described. The general theme of this effort is to make the design of VLSI circuits as simi-
- lar to programming as possible. We are trying to build tools that do for the VLSI circuit
3 ﬂ-:: designer what the best software tools do for the implementor of large software systems.

The work described here is a procedural language to specify circuit layouts.

(!
" ) 1. Introduction
In this paper we describe a very important component of any VLS]
design environment: a tool to automate the layout of circuits. This work
’v‘,‘ is part of an effort to create an integrated environment for VLSI design
2 (including layout systems, device and switch level simulators and testing
\%_ facilities) currently under way at Princeton.
. ( Our main thesis is that the VLSI design task can be profitably thought
";: of as a programming task, as opposed to a geometric editing task. We
9 believe that much is to be gained by consciously attempting to apply our
ag knowledge about programming to this new activity. We have thus tried to
o create tools for the VLSI designer that incorporate the most useful
=" « features of the software develpoment tools that we are familiar with.

Although we feel that we have had moderate success in this endeavor
we are well aware of how much room for improvement we have left, and
would like to help convince the community of people interested in the
design of programming language and programming environments that
there are fresh and important challenges in this relatively new direction.

¢ A prototype of the procedural layout language described in this
paper has been operational for some months. All figures given in thic
paper were generated by the language and all the code fragments have
been used as part of larger programs.

% Portions of this paper appeared tn the Procesdings of the 1982 ACM symposium on Princtples of Program
' ming Languages and in the Preceedings of the 1002 Design Automatio Conference.
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% 2. ALl a procedural language to describe layouts
X The main feature of ALI as a layout language is that it allows its user
to design layouts at a conceptual level in which neither sizes nor posi-

I tions (absolute or relative) of layout components may be specified.
o Mostly as a consequence of this, ALI simultaneously (i) makes the layout
SO - task more like programming than editing, (ii) eliminates the need for
Fa design rule checking after the layout is generated, (iii) permits the crea-
AN tion of easy to use cell libraries and (iv) provides the designer with the

. mechanisms to describe a layout hierarchically so that most of the detail
22 at one level of the hierarchy is truly hidden from all higher levels.

" The notion of not assigning sizes or positions to any object in a layout
;- until the complete layout has been described (similar to the idea of
o delayed binding in programming languages), sets ALl apart not only from

- just about all of the graphics based layout editors we know of ([3_, {4,
. [7], [13]. [17]) but also — with the exception of [14] -- from most of the
3 procedural languages for the layout task currently in use or recently pro-
é’ sed, whether or not they include a graphics interface ([1], [4], [5], [8].

9], [10], [15)).
oy The issues that we tried to address with ALl are the following.

\ » The creation of an open ended tool. Graphics editors tend to be closed
2 tools in that it is hard to automate the layout process beyond what the

1 original design of the system allowed. Procedural languages are gen-
3 erally much better in this respect. However, the fact that most such
o2 languages require the specification of absolute sizes and positions,

makes the creation of a general purpose library of cells a hard task,
since information about the sizes and positions of the cell elements that

3 can interect with the outside world has to be apparent to the user of
Y the library. The absence of absolute sizes and positions makes this
":;: problem much less severe in ALI. The extensibility of ALI derives from
Bl the fact that it has been built on top of Pascal, thereby making the full

power of Pascal available to the designer. The generation of tools to
automale the layout process, such as simple routers or PLA generators,

7 involves writing Pascal routines to solve some abstract version of the
§;ﬁ problem and having done so invoke ALl cells to generate the layouts
by » Creating tools that are simple to use and easy to learn. In particular,
é we want to avoid tools whose behavior is unpredictable. Many programs
i which rely heavily on sophisticated heuristics respond to small changes
1Y in their input with wholesale changes in their output. We have main-
4 tained a simple correspondence between the text of an ALl prograrmn and
hine the resulting layout so thal changes in the layout can be easily related
o to changes in the program. This decision has simplified the system at
, Lhe cost of making it less knowledgeable about MOS circuits.
e » Facilitating the division of labor. Large layouts have to be produced by
" 1 more than one designer. lf the piece produced by cach designer is
ey specified in absolute positions, serious problems are likely to arise when
, \ the different pieces are put together, unless very tight interaction -
i) with its attendant penalties in productivity -- is maintained throughout
e the design. ALl allows the partitioning of tasks in such a way that the
' designer of a piece of the layout does not need to know anything about
:-
\:
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the sizes of other pieces of the complete layout. For instance, on the
top of fig. 1 three simple cells are shown with the intended connections
between themn shown by dotted lines; on the bottom of the figure, the
pieces have been brought together to form a larger piece. The stretch-
ing that has taken place has occurred without the designer having to
plan for it explicitly while considering each individual cell.

i

Ng.1
Three separate celis and the result of
connecting them along the dotted lines

¢ Facilitating Mhierarchical design. Even when a single designer is

involved, the ability to view a layout as a hierarchy, with as much infor-
mation about lower levels completely hidden from higher levels, is
extremely useful. In ALl, the information about a given level of the
hierarchy needed at the level immediately above is reduced by the
absence of absolute sizes and positions, to topological relations among
the layout elements of the lower level visible to the higher one.
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N .f ¢ Reducing the life cycle cost of layouts. Modifying a layout to be fabri-
» cated on a new process, or to make it conform to a new set of design
l - , rules, is currently a costly operation. Yet successful designs seem to be
5 J_. more or less continuously updated as improved processes become avail-
> . able during their lifetime. Fig. 2 shows two instances of a simple layout
- produced with ALl. The instances are the result of running an ALl pro-
:i gram twice changing ezactly four constants in the program in between
A runs (those that specified the sizes of power and ground buses). This
o type of flexibility addresses the problem directly. An ALl program can
2N be written naturally so that all layouts produced by it are completely
oy free of design rule violations, no matter what the values of the con-
.\.ﬁ stants used in the programs. Therefore the need for costly design ruie
Mol checking of different instances of a layout (see fig. 2) can be avoided.
) The same ALl program can also generate layouts using different design
e ruies by running it with a new module incorporating the new design
. rules.
&2 - ¢ To avoid the need for special purpose computing equipment. ALl can
,:: be used effectively from a standard ASCII terminal in combination with
o a small plotter shared by several designers. All the algorithms used in
. the inner cycle of ALl require linear time, therefore permitting the use
3 of just about any machine and guaranteeing fast turnaround on small
N layouts. Furthermore ALI replaces design rule checking by a hierarchi-
I cal process that can be performed separately on the individual pieces of
j: the layout. For example, after checking that each of the pieces shown

on the top of fig. 1 is ifree of design rule violations, their combination

shown on the bottom of the same figure will be guaranteed by ALl to be
- free of rule violations regardless of the stretch that takes place as a

::’,7 consequence of connecting them. ALl in fact requires far fewer comput-
-,j' ing resources than many design rule checking programs.

We feel that ALI succeeds in partially solving most of these problem.

We do not claim however to have made the layout task trivial. To use a

. software metaphor, we feel that ALl elevates the work of the layout
2 designer from absolute machine language programming, to programming
: in a relocatable assembler with subroutines. This not only makes the
X task more pleasant but makes new and more powerful tools possible
such as loaders, linkers and compilers in the case of software. Similar

( tools for the VLSI world — which would indeed simplify the iayout task

‘-

» enormously — remain, however, to be written. ALI should stand or [al!
i) with its ability to allow such tools to be built: whether we are right in
"'\ believing that we have a framework in which these tools can be more
S easily implemented will not be known until our efforts in that direction
by succeed or fail.

The remainder of this section is devoted to a survey of the main
2- features of ALl and a brief discussion of its current implementation
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Two ALl layouts generated by programs
differing only in the values of four constants
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2.1. An overview of ALl

The basic principles of ALI are quite simple. A layout is regarded as
a collection of rectangular objects (with their sides oriented in the direc-
tion of the axes of a cartesian coordinate system) and a set of relations

"‘-} among these rectangles. The ALl user specifies a layout by declaring the
\Y rectangles (also called bozes) of which it is composed, and stating the
o~ relations that hold between them. ALI then generates a minimum area
,? layout that satisfies all the relations between boxes specified in the pro-

gram. For example, fig. 3 shows a trivial ALl program and the layout it
P produces.
o chip simple;
}:I const
& Anumber = 10;
= length = 20;

width = 6;

B, hiype = array [ 1..Anumber] of matal;
i 3 i - infeger;
By

horizontal : hiype:
vertical : metal,;

"~ .
.
2%at

fori := 1 to Anumber-1 do
above ( horizontalli], horizonial [i+1] );
glueright ( horizontal[t], vertical );
Mmm ( horizontal [i), length )
glueright ( horizsontal[knumber), vertical );
zmore ( horizontal[Anumber], length );
zmore (vertical, width )
end

ek w kA v e o

AN

-

Ng3
A simple ALI program and the layout it produces

S
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This program looks very much like a Pascal program: it consists of a
declarative part, followed by an executable part. To declare a box the
user specifies its name (horizontal or vertical in the example). and its
type, (metal — a predefined type - in the example). The standard box
types correspond to the layers of the physical layout. As the example
also shows, the ALl user can define structured objects (an array in the
example). Further details on the type structure of ALl can be found in
section 2.2.1.

The relations between the rectangles that make up a layout are

{ specified in ALl through calls to a small set of primitive operations in the
executable part. All such operations take as arguments boxes and possi-

bly values of standard Pascal types (integers in our example). In our

example above, glueright and zmore are primitive operations. The primi-

tive above specifies that its first argument must appear above the sccond

one in the final layout, the primitive glueright extends its first argument

to the right to intersect its second argument, and zmore makes the size
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of its first arguments along the z axis at least as large as the value of the
second argument. Note that in this example ALI has determined the
! t minimum separation between the horizontal elements as well as the
minimum sizes of boxes not specified by zmore (such as the height of the

_";::: . horizontal metal lines) by accessing a table of design rules. More infor-
T mation about the type structure and the primitive operations of ALI is
N~ given in the next section.
> When an ALl program is executed it generates two kinds of informa-
{ tion. It produces a set of linear inequalities involving the coordinates of
-;2-.; the corners of the boxes in the layout as variables. These inequalities,
v which embody the relations between the rectangles of the layout, are
R then solved to generate the positions and sizes of the layout elements. A
- brief description of the problems involved in this step can be found in
pa t section 2.3.2. The program also produces connectivity information about
- the rectangles in the layout. This information can then be used by a

switch level simulator that predicts the behavior of the circuit as laid out
whithout having to perform the ususal ''node extraction’’ analysis.

In order for the layouts produced by an ALl program to be free of
design rules, the program must be complete, in that every pair of reclan-
{ gles in it must be related in some way. Two rectangles may be related

ré

N

:_«<
L)

o explicitly in the user program by virtue of being arguments to a primitive
kN operation, or they may be related through the transitivity of the separa-
{in tions. The reason for this strong requirement is to prevent the area
7:':'\'} minimization process from shoving together rectangles that were
‘ inter)lded to be separate (see section 2.3.3 fo a discussion of complete-
- ness).
\ :::' ALI helps the designer to achieve this goal by generating certair. reia-
Vox tions between layout elements in an automatic fashion, and by checking
o on request whether this condition is satisfied. It is however the responsi-
bility of the user to make an AL] program complete in this sense, as the
{ computational cost of doing any sophisticated inference (beyond the
90 transitivity of relations such as above) is prohibitive [16].
gy
]
::1 2.2. Main features of ALl
M p This section describes how ALl appears to its user. Its three subsec-
- tions deal, in turn, with the type structure, the primitive operations of
o the language and the cell mechanism. ALl has been built on top cf Pascal
e and has inherited most of its features. In the interest of shortening this
‘&,’ section we have assumed a certain familiarity with the general features of
o Pascal.
b
oo d 2.2.1. Type structure
2;." As the example of fig. 3 shows, the objects manipulated by AL! are
.‘1 declared by stating their name and their type. The types of ALl have the
™ same structure as the Pascal types. Objects can be of a simple type
: (boxes) or of a structured type.
3 ( +
s
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There are a small number of standard types, all of them simple. The
standard types correspond to the layers of the process to be used to
fabricate the layout (metal, poly, diff, impl, cut and glass in the NMOS
version currently implemented) plus the type wvirtual, used to name
bounding boxes and having no physical reality in the fabricated circuit.
For example, in the program of fig. 2, the declaration

vertical : metal

specifies that the rectangle named vertical on the final layout should be
on the metal layer. ALI will use this information to generate constraints
on its minimum size and its separation from other layout elements.

Structured types are of two flavors: array (a collection of objects of
the same type) and bus (a collection of objects of heterogeneous types,
much like records in Pascal), which correspond directly to the array and
record structured types of Pascal. ALl like Pascal, permits the creation
of new user defined types that can be either simple or structured. For
example, in fig. 3, the fragment

htype = array [ 1..hnumber] of metal

inside the boxiype section of the program, creates a new type, hiype,
each object of that type made up of a number of metal rectangles, and
the fragment

horizontal : hiype

inside the box section, creates an object of that type named horizontal.
In a similar fashion the type declaration

shiftbus = bus
phl, ph2 : metal,
vdd : metal,
data : diff,
gnd : metal

end

creates a user defined type, allowing the user to create objects which
consist of four metal boxes and a diffusion box. The types of the com-
ponents of structured types are arbitrary: the user can define arrays of
buses, or buses containing arrays.

The accessing of the elements of arrays and buses is dore as in Pas-
cal. Thusif z is of type htype then z[i] refers to the i-th element of z, and
if y is of type shiftbus then y.data refers to the diffusion box of y.

Although the structured objects are generally used by ALI simply as a
naming mechanism, they are also used in conjunclion with the cell
mechanism (discussed in section 2.2.3) to automatically generate separa-
tions between boxes. We will be more precise on this point when we
describe the cell mechanism of ALI.
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Ej Like Pascal, ALl is a strongly typed language. The primitive opera-
] tions know about certain type restrictions and generate type mismatch
{ errors if operations are attempted with rectangles of inappropriate
types.

- |

o 2.2.2. Primitive operations

The relations between the rectangles that make up a lavout are
specified in ALl through calls to a small set of primitive operations. All
such operations take boxes (i.e., objects of simple types) as arguments.
Ny In the program of fig. 3, above, glueright and zmore are primitive opera-
-~ tions.
o~ It is not important to know the actual primitive operations of the

current version of ALl to understand its operation. As a gross measure of
its complexity we can say that the system currently implemented -
based on NMOS as described in [12] —~ has about twenty primitive opera-
tions which can be arranged in the following groups:
1 Separation primitives: such as above in fig. 3, which specify that their
arguments must be separated in a certain direction in the final layout.
The minimum amount of space between boxes separated in this manner
- depends on their types and is supplied by ALl from a table of design
rules.
2 Connection primilives: such as glueright in fig. 3, to specify that their
arguments -- which must be boxes in the same layer -- are to be joined
in a particular manner.

s, v *

' l"‘"‘.’l’ %’

.
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»

’ 3 An inclusion primitive, inside, that specifies that one box is to be
o placed inside another. The minimum distances between their edges are
o again suplied by ALI from a table of design rules.

s} 4 Minimum size primitives: such as zmore in fig. 3, which specify the
minimum size of a box along a certain direction. Default minimum

R sizes are provided by ALl from a design rule table.

2 S Transistor primitives, which create depletion mode and pass transis-

) tors.

8 Contact Primitives, which create contacls between layers and connect
{ boxes to them.

Note that no absolute positions or dimensions for any rectangle can

R, |

.. be specified with these primitives. All the rectangles of a layout can be
- stretched and compressed (up to a minimum size) and all can float in any
direction. If one single characteristic is to be used to separate AL] from
> other layout systems, this must be it. Most of the power of Al.i and most
of the problems one faces in its implementation are consequences of this
:'_.. fact.
) It is important to remember that in order for a layout produced by
& ALl to be free of design rule violations, any two rectangles in it must be
2¢] related in some way. ALl will make no inferences as to the relations
' between boxes beyond those implied by the transitivity of some primitive
> operations (i.e., if above (@, b) and above (b, c) are stated, above (a. c)
:.’j need not be stated). Although the system generates a good number of
Y
s
",
4
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*:Ij relations automatically for the user, particularly in connection with the
bes cell mechanism (see the next subsection), there is still a fair arnount of
bk drudgery left for the user in making sure that this requirement is met. A
\ brief discussion on the computational complexity of the automatic gen-
e eration of relations between boxes can be found in section 2.3.3.
R :
A
ood 2.2.3. Cells
Perhaps the most powerful feature of ALl is its procedure-like
o mechanism for the definition and creation of cells. A cell is a collection
T of related rectangles enciosed in a rectangular area. Rectangles that are
§: inside a cell are of two types: local which are invisible to the outside, or
oY parameters which can interact in a simple and well defined manner with
N rectangles outside the cell.
. A cell is defined by specifying its local objects, its formal parameters
and the relations among all of them. Once a cell has been defined, it can
:;Ij- be instantiated as many times as desired by specifying the actual param-
eters for the instance, much the same way as one invokes a procedure or
function in a procedural language. The result of instantiating a cell is to
o create a brand new copy of the prototype described in the cell definition
Vi with the formal parameters connected to the actual parameters.
> A cell definition is made up of a header, in which the formal parame-
I ters are described, a set of local box declarations and a body in which the
N relationship between the parameters and the local boxes, as well as those
b among local boxes, are specified.
e The header describes the names and types of the parameters and the
; ¢ side of the bounding rectangle through which they come into cointact with
g the inside of the cell. The header of a cell (using the type shiftbus
o defined in section 2.2.1) and an instance of it are shown in fig 4.
";\ call shift (left | : shiftbus; right e : shiftbus )
Ne
3y
:'.'J
o
:-:
R
N
Y A sample cell definition header
§ -and an instance of the cell defined
*.‘o
N
Y
4 ]
Lol
:“
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Cells may have any number of parameters on each of their four sides.
The order in which they are listed in the cell header describes their rela-
tive positions. Horizontal parameters (i.e., those touching the cell on the
left or right) are assumed to be listed in top to bottom order and vertical
parameters in left to right order.

The body of a cell is very much like an ALI program. For example, fig.
5 shows a complete cell definition that consists of a variable number of
shift cell instances connected sequentially together with two of its
instances. Note that cells are instantiated by the create statement, and
that the parameter list of the cell contains both box parameters and
other parameters (an integer in this case) in separate lists. Note also
that recursion has been used to define this cell; this highlights the fact
that ALI has the full power of Pascal at its disposal.

When an instance of a cell is created it can be given a name, provided
that the name given has been declared as a rectangle of the standard
simple type virtual. The relationship of the rectangle bounding a newly
created cell to any other rectangle of the layout can be specified in the
standard manner by calls to the primitive operations. This is a vital
fealure since in many cases (i.e., above, below...) stating a relation
between two cell instances ¢, and ¢, immediately implies a relation
between every pair of rectangles r, and r; such that r, is part of ¢, and r,
part of c,.

There are two important ways in which the cell mechanism helps in
the automatic generation of constraints between boxes. When an object
of a structured type is passed as a parameter to a cell, its component
boxe: are separated from top to bottom (if it is a left or right argument)
or from left to right (if it is a top or bottom argument). The order of the
separation is determined by applying recursively the following rules:
array elements are separated ordered by their indices and bus elements
in the order in which they were specified in the bus declaration. Thus, in
the example of fig. 5, the components of parameter inbus would be
separated from top to bottom. The second mechanism involves the
automatic separation of cells that share a parameter; thus in the exam-
ple of fig. 5, the individual instances of shift are separated automatically,
since adjacent instances share a parameter.

The cell mechanism gives the ALl user the ability to describe layouts
in a truly hierarchical manner. A proper ALl design, very much like a well
structured program, will consist of a hierarchy of cell instances with only
a small amount of information at a given level (the parameters of the cell
instances at that level) being visible from the immediately higher level.
For example, the layout given in fig. 2 consists of four instances of the
same cell stacked vertically. That cell in turn is defined in terms of three
other cells, one of them being the cell shown in fig. 1, which is in turn
defined in terms of three other cells.

Much of the power and generality of the cell mechanism of ALI comes
from the absence of absolute positions and sizes in a layout specification.
In particular, two instances of the same cell may have radically different
sizes depending on the actual parameters used to create them, as
exemplified by figs. 1, 2 and 5. We believe that no cell mechanism can be
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cell shiftregister ( left inbdus : shiftdus;
right outbus : shiftbus )
( length : integer );

temp : shiftdbus;
begin
if length = I then
create shift ( inbus, outdbus )
else begin
create shift (inbus, temp );
create shiftregister (temp, outdus ) (length -1)

Ng. 5
A cell definition and two instances of it
generated by a simple ALI program

said to be truly general u .2~ ‘he sizes of its arguments and lccal rec-
tangles, as well as their re;. e -tances are determined at the tune the
cell is instantiated.

There are some penaltic involved in the use of the cell mechanism.
In particular, ALl generates separations between cells in a manner which
is oblivious to what is inside them. That is, the minimum separation
between cells as far as ALl is concerned, is the maximum of all the
minimum separations for two layers in the design rules, thus creating 2
certain wastage. We believe that this penalty will be generally a small
percentage of the total area and is well worth the advantages gained by
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1.

:E}. the ability to separate cell instances as units.

* Another source of wastage is the fact that cells are restricted to be
bounded by a rectangle, so the packing of cells that have irregular shapes

results in a certain amount of unused space. The rectangular shape of
. . the cells is a fundamental characteristic of ALI: The introduction of irreg-
e ularly shaped cells is simply not possible without completely redesigning
oA the language and. However, the waste introduced because of this restric-
tion can be avoided in most particular cases through some code
modifications.

2.3. Implementation issues

The previous section described the user view of ALlL. In this section
we discuss briefly some of the problems to be solved when trying to go
from an ALl program to a layout that satisfies the relations stated in it.
We first give an overall description of the system as currently imple-
mented, then discuss the method used to assign locations and sizes to
the layout elements and then the concept of completeness and how it is
checked.

2.3.1. Overall implementation

The current version of our system has been implemented as {ollows.
{ The ALI program is first translated into standard Pascal. The resuliing
Pascal program is then compiled and linked with a precompiled set of
procedures that implement the primitive operations and the resulting
object module is then run. The output of this program (generated
entirely by the primitive operations) is a set of linear inequalities anc
connectivity relations among the layout elements. The inequalities are
then solved to generate a layout or examined by a program that checks
their logical completeness, and the connectivity information can be used
to simulate the circuit laid out.

The design rules are incorporated as a table which is used by the
primitive operations to produce the linear inequalities. Thus changing
{ the design rules for our system requires only to change this table.

2.3.2. Placement

As explained above, one of the results of running an ALl program is a
set of linear inequalities that embody the relations between the layout
! elements. These inequalities are of the following simple form:

zy ‘Z’Ed (d=0)

where the variables are the coordinates of the corners of the boxes that
form the layout and the constants are either user supplied (as in the
second argument of the zmnore primitive, for instance) or extracted from
the table of design rules by the system itself.

-
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This set of inequalities should be solved so as to generate placements
for the boxes that compose the layout in such a way as to minimize its
total area. In order to perform this task efficiently, we require that no
inequality in the set involve both z and y coordinates. This restriction
allows us to minimize the total area by minimizing the maximum z and y
coordinates of any point independently, at the cost of reducing the range
of the relations between boxes that we can express. We cannot, for
instance, handle rectangles whose sides are not parallel to the cartesian
axes or express aspect ratios directly.

We have now a sufficiently simple problem so it can be solved in time
proportional to the number of inequalities tn our sef. (All layouts that
can be expressed in ALI can be generated by a program that produces a
constant number of inequalities per rectangle). This is done by a version
of the topological sort algorithm [11] applied to the z and ¥ coordinates
independently. This algorithm assigns to each point the lowest possible
coordinate while minimizing the largest coordinate of all points.

The form of the inequalities that we allow is rather restrictive; it is
sufficient however, to describe the design rules given in [12] for NMOS,
and the efficiency gained in return for this simplicity seem to us like a
good tradeofl. A more subtle consequence of the simplicity of the ine-
qualities and the method we use to solve them is that undesirable
stretching can occur, since we have no way to specify a maximum size for
any object. This is not a common occurrence and the user can in all
cases guard against such stretching by the careful selection of the primi-
tive operations used. It is nonetheless an additional burden placed on the
designer.

The choice of an efficient placement algorithm over expressibility
power and a reduced degree of user convenience has been quite cons-
cious in this particular case. We feel that every reasonable measure
should be taken to keep the complexity of the placement problem linear,
given that the size of layouts is currently large (107 rectangles) and is
growing fast. Widening the class of linear inequalities acceptable is
almost certain to make linear time solutions impossible {2].

2.3.3. Compleleness

ALl programs do not involve absolute sizes or positions of boxes, and
are, to a great exient,independent of the design rules. These characteris-
tics make it clearly desirable to insure that the layout described by a
program will be free of design rule violations in a way other than check-
ing the finished layout. The following paragraphs describe a way of insur-
ing freedom from design rule violations in a manner that is independent
of the actual design rules used to generate the final placement. The
description may be somewhat cryptic; the interested reader is referred
to [18] for further details.

A layout generated by an ALl program is complete if for any two
boxes a and d whose types make it possible for them to interact in the

final layout, either
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(i) a and b are explicitly stated to be in contact by some primitive
operation, or

K (i) a and b are, explicitly or through the transitivity of primitive rela-
tions, stated to be separated in either the z or the y direction by a
- _ minimum amount which depends on their types.
-{: From this definition, it should be clear that testing completeness of a
- : cell instance involves computing the transitive closure of a graph. There-
S fore the complexity of the operation will be 0(n%), where n is the number
' of boxes in the cell. It is thus not feasible to test a large layout for com-
08 pleteness in a direct way.
,‘,: Fortunately, completeness can be checked hierarchically. Let us
A look only at the objects at the highest level of the hierarchy of boxes that
o defines a layout, i.e., those boxes (including cell boundaries) defined glc-
t bally in the ALl program that generated the layout. If these objects are
¢ related in a complete manner and the cell instances used at this level are
§: also complete, then the whole layout is complete.
; Thus one can check the completeness of a layout by successively
o, checking cell instances for completeness, thereby reducing the complex-
. q ity of the process to O(m3) where m is the largest number of boxes local
, to a cell instance in the layout. This process can be reduced further.
:ﬁ since not every cell instance needs to be checked. For example, if a cell
X is defined by a straight line program, checking one instance for com-
\g pleteness suflices, as one instance of the cell will be complete if and only
" if all of its instances are [18]. The case of cells with branches and itera-
| tion is not quite as simple. Yet we are confident -- and our experience
- tends to confirm this belief — that checking the completeness of a few
X carefully selected instances of any cell definition will be enough to
o guarantee that the cell definition is complete.
™ The end result is that completeness has the flavor of a static, almost
! syntactic, property for all non malicious examples, and is much easier to
A ¢ check in a well structured layout than design rule freedom by the stan-
Y dard means on the final layout.
X Finally, a word about the possibility of taking an incomplete layout
Py specification and automatically completing it. The general problem of
K generating an optimal completion is NP-Complete, but the simpler ver-
~ sion of generating any completion for graphs embedded in a grid (as our
o layouts are) seems to be solvable in O(n?) steps. The question of how
o much area will be wasted by such a completion algorithm will have to wait

for some experimentation, but there is no question of its usefulness.

@

2.4. Experience with ALl

The current implementation of ALI has shown the soundness of most
of our original ideas. The system is efficient and the language easy to
learn, and the layout it produces are relatively dense (for example, an ALl
program written without concern for area optimization produced a Jayout
which was about thirty per cent larger than a similar layout packed by
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o hand on a graphics editor. Unfortunately, this evidence has been gath-
; ered mostly from people who had a hand in designing or implementing
. ALl. Perhaps a more reliable evaluation of ALl, ought to wait untii a sub-
‘{j stantial number of users not involved in its design can give an informed
‘,d - opinion. We hope to obtain this evidence before long, since ALl is
B currently being used in a VLSI design course.
A The fact that very little effort was invested in error recovery for the
{ sake of expediency in getting a prototype running, and that no mechan-
N ism for integrating separately produced layout pieces was provided 1nake
? the current system useful mostly for teaching purposes and experimen-
™ tation. It must be emphasized that this is a result of implementation
{: choices, and not of any intrinsic limitation on the approach we have
Wi taken.

| ¢ The problems of the current system which we plan to address with
~ the next version are the following:

§

)
k (1) Memory requirements. The solution of the system of linear inequali-
3 ties requires large amounts of memory. We will use a different algo-
¥ rithm which is slightly less efficient in terms of time but requires an
. K order of magnitude fewer memory locations for a typical large lay-
! out.

9 (2) Pascal problems. The current ALl has exactly the same type struc-
ii ture as Pascal. The lack of generic types and dynamic arrays has
; made the task of writing general purpose tools (PLA generators,
’ routers...) inside ALl more difficult than it ought to be. The next ALl
t will have the notions of generic types and dynamic arrays.

(3) Connecting primitives. Certain objects, such as contacts, are used
frequently enough to warrant making them part of the language.

(4) Separate '‘compilation’ facilities. Clearly, large layouts will have to
be generated in pieces, which is something that our curreni system

Al
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Xy

. { cannot do.
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Rectilinear Graphs and their Embeddings

Gopalakrishnan Wjeyan
Avi Wigderson

Department of Electrical Engineering and Computer Soience
Princeton University,
Princeton, New Jersey 08544

1. Introduction

The problem we address in this paper is an embedding problem for a class
of graphs which we call rectilinear graphs. These graphs are important in many
VLS] layout problems. In fact, this problem arose in the implementation of ALl
[6,7). a procedural language for VLS] design currently under development at
Princeton. An embedding algorithm can be used to automate the production of
VLS] layouts in many procedural design systems.

Consider the following model for VLSl layout design A VLS] layout is
described hierarchically using cells and wires that connect the cells together.
Each cell C is enclosed within a rectangle R(C), and has four tuples of pins, one
each for the left, top, right, and bottom of rectangle R(C). Each wire w is
denoted by a pair of pins (p.p,). such that p; and p; are pins of different cells
and are of opposite types. For example, if g is a right pin then p; should be a
left pin Given such a description of a VLSI layout, our aim is to produce an
embedding of the description on the plane, such that () no two bounding rec-
tangles touch each other, (i) the pins appear in the correct order on the
bounding rectangles, (iii) the wires are straight and rectilinear, and (fv) no two
wires cross each other. Later on, we can flll each bounding rectangle R(C) with
the embedding of the cell C in the same manner.

The restriction that wires cannot be bent may seem unrealistic, but this is
certainly the case in many design systems including All. If a wire has to be
bent, the user specifies that by breaking up the wire into several straight wires
and placing cells at each of the turn points of the wire. In ALl, for example, the
user can incorporate routing algorithms in a ALl program to determine how the
wires are to be bent. The restriction that wires cannot cross implies that we are
dealing with the wires on a single layer. For a layout with multiple layers, it is
clearly necessary that the wires on each layer do not oross.

To solve the above embedding problem, it is enough to consider only a sim-
ple restriction, where each bounding rectangle has at most one pin on each side.
We can then treat the bounding rectangles as vertices and the wires as edges.
which leave in one of the four cardinal directions. We give the name rectilinsar
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graphs to such graphs. The embedding problem of rectilinear graphs is our
main concern in this paper. :

For VLSI applications, we need efficient algorithms to recognize and then
actually embed rectilinear graphs. In this paper, we present an O(n) recogni-
tion algorithm and an O(n%¥) embedding algorithm, where n is the number of
vertices in the graph. Thus, a hierarchically described VLSI layout with cell
fnstances C,.C,, - - ' ,Gy can embedded in time 0(‘21;;'). where n; is the

=]
number of pins in cell instance &.

An embedding of a rectilinear graph is just a relative placement of the ver-
tices { cells ) on a rectangular grid, such that no two edges cross. Some of the
relative placement information is already present in the description of a rectil-
inear graph For example, if (a.,b) is the rightgoing edge of vertex a, then a
should be to the right of b, and a.b should be on the same horizontal grid line.
Hence, an embedding can be viewed as a “completion” of the rectilinear graph
desoription. We showed in a different paper [8] that the completion problem for
a slightly more relaxed VLSI layout model is NP-complete. In light of this result,
the results in this paper have become more important.

In section 2, we present formal definitions of rectilinear graphs and their
embeddings. In section 3, we mention some properties of rectilinear graphs. We
discuss some topological properties of the embeddings in section 4. A necessary
and sufficient condition for biconnected rectilinear graphs to be embeddabile is
presented in section 5. A similar condition for arbitrary rectilinear graphs is the
main result in section 6. We also describe a O(n) recognition algorithm in this
section. In section 7, we use the ideas of the previous sections to obtain an
O(n?) embedding algorithm. An important subclass of rectilinear graphs is dis-
cussed in section B. In section B, we discuss extensions and open problems. For
definitions of graph theoretic terminology used in this paper, please refer to
[1.2).

2. Definition of the Problem
First we give a formal definition of a rectilinear graph.

Definition 2.1: A rectilinear graph G is a triple (V, E, A), where V is the vertex
set, £ is the edge set, and

A:VxV-Z ) fe}, where £={L.R.D U}

is a vertez ordering relation with the following properties:
foreverya,bc € Vand X €l

() A(ad))=¢ o fad]eE

(ordering is specified only between adjacent vertices)
(#) A{(ad))=L e Al(ba))=R, A((a.d))=D «\((b.a))="U,
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el (i) A((a.d))=X - A((c.b)) # X, \VVc ¥ a (no overlapping edges).

Y
{. : Each vertex in a rectilinear graph has degree at most four, and each edge
G2 (a.b). as it goes from one vertex @ to the another b, has & nonempty label on it,
::.':I;::: which in the embedding will indicate the direction (left,right, down, or up) in
:-j:.-j which the edge leaves vertex a. There can be at most one edge with a particular
_::I:::'.; : label emanating from each vertex. The undirected graph G(V.E) will be

; referred to as the underiying graph. Figure 2.1 (like all other figures) gives an
fllustration of a rectilinear graph.
- R
- R
Y sk U (e
—
=R U
‘T T
Figure 2.1
A rectilinear graph

Now we define what sort of an embedding we are looking for.

0 Definition 2.2: An embedding of a rectilinear graph G(V.E \) on a rectangular
grid is given by two mappings z, ¥: V- Z ( the integers ) which are the x and y
coordinates respectively of the vertices. These mappings obey:

1. the ordering relation, A, i.e. for all edges fa.b} € £

( M(ab))=L -+ y(a)=y(®) =(a)>=z()

‘ N(@b) =R » y(@)=y®). z(a)<z(®),
AMad)) =D -+ z(a)=z(b), y(a)>y(d)
Mad)=U = z(a)=z(), y(a)<y®)

2. Planarity, no two edges cross, i.e. for each pair of non-adjacent edges
fa.bi. {c.d] suchthat A((a,b)) =R and A{(c.d)) = U, the condition
z(a)<=z(c)<z(b) and y(c)sy(a)<y(d)

‘s ( does not hold.

An embedding of a rectilinear graph on a rectangular grid is one in which
the vertices are placed at grid points, the edges run along grid lines in the direc-
tions given by their labels, and no two edges cross each other except if they
share a vertex. We say that a rectilinear graph is embeddable if it has an
embedding. We will show in the next section that not all rectilinear graphs are
embeddable.
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::; Now our main problem can be stated simply: Given a rectilinear graph
’ G(V.E ). is it embeddable, and if yes, find an embedding.
N 3. Some Comments on Rectilinear Graphs
-
N
0
Figure 3.1
I~ Two nonembeddable rectilinear cycles
o
=
v i
%
% v
2
s
. B
’ @) (b)
“
:: Figure 3.2
o Two nonembeddable rectilinear graphs
i whose biconnected components are
v In this section we list some properties of rectilinear graphs and their
-'_':3‘, embeddings. These will give an indication of why the problem is not trivial and
‘_i:\ why it is different from other embedding problems, and in particular, planar
p graph embedding {3,5).
o 1. Embeddability is a hereditary property. Subgraphs are defined in the usual
Ij;. fashion, but here the labels of edges are inherited. This is obvious, but
. worth mentioning. because this will be used in the proofs.
s
“ 2. It each connected component of a rectilinear graph is embeddable then the
T K graph itself is embeddable. So, without loss of generality we will restrict
- ourselves to connected rectilinear graphs.
Y
- 3. Rectilinear graphs with nonplanar underlying graphs are clearly not
::: embeddable. So it is not interesting to consider those graphs. However, not
oA every rectilinear graph with a planar underlying graph is embeddable. In
ﬁ. } figure 3.1, we have two simple cycles which are not embeddable.
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4. In contrast with planarity, embeddability is not a property determined by
the biconnected components. Figure 3.2 provides an illustration of this
fact.

5. This problem is a restriction of an NP-complete problem [8.11]. For each
wire w, we are given its orientation (horizontal or vertical), and a set ¥, of
vertices. The wire w has to pass through each vertex in the set ¥, (the ver-
tices could be touched in any order). Then, the embedding problem
becomes NP-complete.

6. If we relax the rectilinearity of the edges and impose only the cyclic order-
ing of the edges at each vertex, then there is an O(|V|) algorithm [10]. The
cyclic orderings automatically determines the faces of the embedding (if
one exisls). Thus a embeddable rectilinear graph has a unique embedding in
this sense.

4. Topological Structure of Embeddings
M

A((adcdefgh)) = LURDRUL
Figure 4.1
The extension of A to paths.

There is a natural way to extend the function A to paths and cycles in the
graph as follows. Given &a path P =(vov, ' -.,v) we define
A(P) = M(vo.v )N (v .vg)) - - - AM(vg-1.1)). We define a similar extension for
cycles where now v; = vp. A becomes a mapping that associates with each path
or cycle in the graph a string in £° which is the concatenation of labels along the
path or cycle. Note that strings containing RL, DU, LR, UD as substrings do
not represent paths. Also the direction in which we traverse a path and the
starting point in a cycle are important. An example of this mapping can be found
in figure 4.3.

Next we define two topological actions on rectilinear graphs. These actions
will simplify a rectilinear graph while preserving its topological structure. Let G
be a rectilinear graph.

Action 1 - Edge Contraction: Let (abcd) be a path in G such that both & and ¢
have degree 2, and A((abcd)) = XYX where X.Y € L. Contract the edge (b.c) to
the vertex . The resulting path (abd) will have A((abd)) = XX. We abbreviate
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Edge contraction and vertex deletion
this action by XYX -+ XX ( figure 4.2(1) ).
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Action 2 - Vertex Deletion: Let (abc) be a path in G such that vertex b has
degree 2, and A{{(abc)) = XX where X € . Delete the vertex b and introduce
the edge (a,c). The resulting edge (a,c) will have A((a,c)) = X. We abbreviate
this action by XX - X ( figure 4.2(2) ).

In a natural way we can define inverses for the above two actions which we
will refer to as edge expansion and vertex addition respectively.

Lemma 4.1: Let G be a rectilinear graph and G’ be the graph resulting from G
by the application of a sequence of the above four actions. Then G’ is also rectil-
inear and moreover G' is embeddable if and only if G is embeddable.

Proof: The proof is easy and is left to the reader. »

]

RDLDR -+ R RDLDRULDLURDLU - RDLU

GL———

Figure 4.3
Simplification of a path and a cycle

Definition 4.1: Given a string ¥ € L° representing a path or a cycle, the
simplified form % of 7 is obtained by repeatedly applying the reduction rules
XYX - XX and XX + X, where X,Y € Z, until they cannot be applied any more.
If ¥ represents a cycle then it is treated as a cyclic string.

In figure 4.3 we give a path and a cycle along with their simplified forms.
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Lemma 4.2: Every string ¥ € £° has a unique simplified form.
( Prool: The replacement system defined by the two reduction rules have the
Church-Rosser property [8]. «

Definition 4.2: A square is one of the cyclic strings LURD or LDRU.
Sometimes we may distinguish between two squares by their starting labels.

(
Definition 4.3: A spiral is a path which cannot be simplified. Equivalently a
spiral is a substring of (LURD)* or (LDRU)*.

’ Lemma 4.3: Every path is embeddable.

Proof: Every spiral is embeddable. Since any path simplifies to a spiral (by
definition ), by lernma 4.1 it is also embeddable. »

So it is the cycles which make the problem nontrivial. The following lemma
is a crucial fact about cycles.

Lemma 4.4: A cycle is embeddable if and only if it simplifies to a square.
Proof: if: A square is embeddable and hence by lemma 4.1 any cycle which
simplifies to a square is also embeddable.

only if: Let f be an embeddable cycle and A(f) =y. By lemma 4.1, the
1 cycle defined by ¥ is also embeddable. Let |y} = n. Look at the embedding of ¥.
Since it has no crossings the embedding is a simple polygon. Therefore the inte-
rior angle of this polygon sum to (n-2).180°. Since ¥ is a spiral all its interior
angles are 90°. The only solution to n.90 = (n =2).180 is n = 4, Therefore ¥ is a
square. ®

{ The proof of the previous lemrna suggests another useful characterization
of embeddable cycles. Going along a cycle f = wv,vz - - - uyv; in the counter-
clockwise direction, let us denote by g, (v;) the angle at vertex v;, which is the
angle between (v(-1.%) and (v; ¥41).

= lemma 4.5: A cycle f =v,¥p ' ¥,v;, 1 2 4 is embeddable if and only if
e o(f)= gv () = (n+2).180° .
L, =
_‘,‘,'j:ff' Proof: Suppose f is embeddable, then its embedding is a simple polygon.
}'-;:',‘f; Depending on whether we sum the interior angles or exterior angles we should
2l | get (n £2).180°,

To prove the sufficient part we show by induction of n that f simplifies to a
square. The possible values for ¢, (v;) are 90,180,270°. The basis for induction is
n = 4. In this case the given sum of the angles is either 360° or 1080°, which
implies that each angle is either 80° or 380° respectively. So f must be a
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some %, gy (y) = 180°, then A(yy;v4v4;) = XX. We can apply vertex deletion at
Y to obtain J' FuUve e Yy, Then
?(7') = o(f) = ¢y (%) = ((n~1)%2).180°. and by induction we are done.

This leaves the case where all angles are either 90° or 270°. Since n > 4
and ¢(f ) = (n+2).180° not all the angles can be equal. Hence there must be a k
such that ¢, (v,) # py(vrs1). Hence we have A(vp- Va4 1Ve2) = X¥X. Apply
edge contraction to obtain f'=w; - ¥ _1UVs.z - - - Upv;. The edge contrac-
tion removed 360° from the angle sum and added 180°. Hence
?(F") = ((n-1)£2).180°. =

Definition 4.4: A complement of a path P with respect to a square o is any
path P€in the graph such that PP¢is a cycle which simplifies to A(PP9) = o.

Lemma 4.6: Given a path P, all its complements with respect to a square o,
which have the same start and end labels, have a unigque simplified form.

Proof: Let A(P)=a=X,X; - X, Since a is a spiral we have X; = X; for
i = j(4). Assume that k > 4 and that the spiral a and the square o are either
both clockwise or both counterclockwise. Then ¢ must be a substring of a. Since
0 is a cyclic string we can assume that 0 = X, XpXs X,

Let P¢be a complement of P with respect to ¢ and let A{PY = 8. Since
k > 4, f must spiral in the opposite direction to a. Since both a and g are
simplified, af can be simplified only at the borders between the two strings.
Write 8 = 8,B:8s, such that Bsaf, = a We are allowed to shift 83 because af is a
cyclic string. Then it is clear that 8, € §X; 3X; .X; .} and B3 € {£.X,.X X, ]. B;is
the 'essential part' of 8. Since |a| =k and ¢ = 4, we must have |§;]| = k—4.
From the possible values of 8, and 85, and the fact that 8 is a spiral opposite in
direction to & , we can conclude that 8, = X4 _1Xp-2- ' X,  We used & > 4 in
order for 82 not to be an empty  string. Therefore
B=18e).X X3 X1+ X$2.X,.X,X,), which is unique but for the start and
end labels. The arguments in the cases where a and o are in opposite directions
and for k < 4 are similar. =
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6. Biconnected Rectilinear Graphs

In this section we discuss an algorithm for recognizing biconnected rectil-
inear graphs. Note that the ordering relation A induces a cyclic ordering of the
edges incident at each vertex v. For convenience we will need the following
definition.
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Definition 5.1: Let v be a vertex in a rectilinear graph G. Define Lg(v) to be the
cyclic list of the neighbors of v in G in the counterclockwise order.

Using these lists, we can define the essential notion of a candidate face of a
biconnected rectilinear graph.
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o CFi(e) = 2,1,54,3,2 and CFy(e) = 1.2.7.6,54.3.2
({3 Figure 5.1
TN Candidate faces
prT. Definition 5.2: Let G = (V.E.\) be a biconnected rectilinear graph. With each
::3;}.'5 edge ¢ = (v,,vp), {v, > vy’ we associate two lists of vertices called candidate
E-. 43 Jaces CF,(e) and CFgle) which are defined as follows.
I »r, CFy(e) = v vg - - - WYy Where vy # v for €5 ¥ v,y L #j and vy, =y
‘““ ‘ ' for some i, 1 <1 < k-1, such that for each I, 1 <1 <k +1, y;,, is the successor
z‘ of y;_; in the cyclic list Lg(v;). CFp(e) is similarly defined but starting with
&f,“: VoV,
:\'1.5 It is easy to see that CF, and CF; are uniquely defined. An illustration of
ST this definition is given in figure 5.1.
S ‘ We now need a lemma about biconnected undirected graphs. Let us define
Nl a biconnected graph to be minimal if for every edge e in the graph G~e is not
;I'; biconnected. The following lemma is taken from [2] and is stated without proof.
By
"3""1"' : Lemma 5.1: If G is a minimal biconnected graph having at least four vertices
N then G contains a vertex of degree two.
L%
Sﬁ,‘,’ Lemma 5.2: In any biconnected graph G which is not a simple cycle, there is a
:ﬁ: simple path P = (v,,vg).(vevs). - * * ,(¥p_;v,). r 2 2, with the intermediate ver-
( tices ( if any ) v;, € # 1,7 all having degree 2, such that the graph G' = G~P is
- biconnected.
/ ‘J': Proof: Transform the given graph G to another graph G" by replacing all paths
",
_ﬁ»: of the form P = (v,vp).(va,vy), - - - ,(vy_1.%) Where the vertices v, i » 1.r all
‘ :f:- bave degree 2, by the edge (v,v,). So for each edge ¢ in G" we have a
' corresponding path F, in G. Note that the degree of any vertex in G" is at least
three. If G has multiple edges between some two vertices, say u and w, then in
-:;::.f G there must be at least two parallel paths between u and w. Since G is not a
-:f_:;:j simple cycle any one of those paths will serve our purpose. If G does not have
s;ij multiple edges then it must have at least 4 vertices. By lemma 5.1 G cannot be
NI minimal. Therefore there is an edge ¢ in G such that G"~e is biconnected,
: p’,; 1t For convenience we assume that V is a set of integers.
N
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which implies that G—F, is also biconnected. s

The {ollowing theorem gives a necessary and sufficient condition for a bicon-
nected rectilinear graph to be embeddable.

Vg. V-1 _______-1_"VK
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Figure 5.2
Two possible embeddings of CF,(e)
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Figure 5.3
The two cycles f,.f  and the path P

Theorem 5.1: Let G = (V.E,)) be an biconnected rectilinear graph with at least
three edges. Then G is embeddable if and only if for each edge e in the graph
both the candidate faces CF,(e) and CFg(e) represent simple embeddable
cycles in the graph (i.e. the starting and ending vertices are identical, and it
simplifies to a square). Moreover, if the graph is embeddable each such distinct
candidate face corresponds to a face in the planar embedding.
Proof:

only if: Supposing for some edge e =(v,vp), CF,(e) is not a cycle, i.e
CFy(e) = v, ve '+ * Wy, VUps; With vy = vy, for some i, 1 <1 < k-1. Suppose G
is embeddable. Look at the cycle vg, - - - Wp ¥4 in the embedding. Suppose
that the edge (v-,v) is inside this cycle. There can be no other edges
(u.vy).i £ § sk dnside this cycle, otherwise u would have appeared instead ot
Vs, in CF\(e). From the planarity of the embedding, there can be no path from
v;-1 to vy other than the edge (v, v). This contradicts the biconnectedness of
G. The case where (v(_;.v) is outside the cycle is similar ( both cases are dep-
icted in figure 5.2).
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Suppose CF,(s) is a cycle but is not embeddable. Since CF,(e) is a sub-
graph of G, G itself cannot be embeddable. Similar arguments holds for CFy(s).

¢/: The proof of this part is by induction on the number of edges. The basis
for the induction are simple embeddable cycles, for which the claim is true by
lemma 4.4. Assume that the claim is true for any biconnected rectilinear graph
which has less than & edges. Let G be a biconnected rectilinear graph which is
not a simple cycle and which has & edges. By lernma 5.2, there is a simple path
P = (v,.vg).(vgvy). - - - (vp-1. %) with the vertices v,, 1 # 1,7 all having degree
2. such that the graph G' = G-P is biconnected. v, and v, will have degree
greater than two. Also assume that v, > vgand 8,z = (v;,vp).

Since all our candidate faces are cycles, if an edge e lies on a candidate
face f Lhen either CF (e) = f or CFg(e) = . So each edge will be present in
exactly two of these candidate faces. Hence the path P will appear in CF,(e ;)
and its reverse path will appear in CFy(e ;). Let
J1=CF(e) =v,va - - Y1y, - - - 0,

J2=CFg(e2) =v, vy, - - v Wy, - - W3 v, , ANd

Ja=viw,, - WUy, Uy

It follows from the definition of the candidate faces £, and f, that the vertices
u;,vpw; appear consecutively in that order in Ly(v,) and that w,.v,_,u,
appear similarly in Lg(v,) ( see figure 5.3 ). Therefore for each edgein f,or f;
which is not in P, the new candidate face in G' will be f 4 which is a simple cycle.

We still have to show that fs is embeddabie. Since f, and f, are both
embeddable p(f ;) = (r+512).180° and ¢(f2) = (r +k +2).180° . However, since
J 1 and fp share the edge &,p it is implied by the definition of candidate faces
that p(f,) = (r+35+2).180° and ¢(f ¢) = (r +k£ +2).180° is impossible. With a little
bit of algebraic manipulation we can show that p(fs) = ((§ +k+2)+2).180°. Since
J s has j +k +2 vertices by lemma 4.5, it is embeddable. Thus the candidate faces
for G’ are the same as those for G, excepting for f s replacing the two faces f,
and f 2. So for each edge in G its two candidate faces are again simple embedd-
able cycles. By induction hypothesis G' is embeddable and each distinct candi-
date face corresponds to a face in its embedding. The orderings of the edges at
the vertices v, and v, imply that the end edges (v,.v;) and (v,-;,%,) of the path
P are both trying to go inside the face corresponding to f,.

We are left to show that we can add the path P back without destroying
embeddability. Find any rectilinear path P’ in the face corresponding to /s in
the embedding of G', that starts and ends with A((v,.ve)) and A((vy-5.vy))
respectively. This is clearly possible although we may have to extend the grid in
order for P' to lie on the grid lines. P’ creates a face in the embedding with the
path P, =wuyuz - -wyv, If fs is not the outside face then
X(P,P) = X{J,) = A(P,P) = 0. The case when [ is the outside face is slightly
more complicated. There are two such different paths P’ depending on the new
outer face that is created. However, for one of the two the above holds and sup-
pose this is the one we chose. By definition both P and P’ are compiements of
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P, with respect to o, they also share the same start and end labels, and by
lemma 4.8 we have A\[P) = A{P’). Therefore G'+P' can be obtained from G by
applying a sequence of the four topological actions, and since G'+P' is embedd-
able, by lemma 4.1 G is also embeddable. ]t is easy to see that the two new
faces we get after inserting P in the embedding of G' correspond to f, and fo »

The above theorem leads to the following algorithm for recognizing embedd-
able biconnected rectilinear graphs. The algorithm also outputs the faces of the
embedding if the graph happens to be embeddable.

Algorithm chack-diconnected(G),
begin
if G is an edge then return;
if |E|>3|V|-6then
begin
write( not embeddable’);
quit
end;
for each edge ¢ do
begin
mark{e,1]:= false;
mark[e ,2]:= false
end;
for each edge ¢ do
fori:=1to2do
begin
if not mark(e i] then
begin '
J := candidate-face( e, € ),
if not embed ~cycle (f) then
begin
write( ‘not embeddable’ ),
quit
end;
for each edge e' = (v,,vp) in f do
if v; > vg then mark[e’,1]:= frue
else mark[e',2]:= true;
output (1)
end
end
end
Boolean function embed-cycle(f) returns value true if f is an embeddable

cycle. 1t f is a cycle then we simplify using the reduction rules and check if we
end up with a square. This can be done in time linear in the size of f. Function
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DN call candidate-face(e,i) returns the candidate face CFy(¢) and the function can
be implemented exactly as described in definition 5.2. In the calls to this func-
tion, each edge & can be traversed at most twice, due to the flags mark([e,1] and

. mark(e,2]). Therefore the algorithm runs in time O(]V|). We conclude this sec-
A tion with a lemma which will let us identifly the outer face in a rectilinear graph.

Lemma 65.3: Let G be an embeddable biconnected rectilinear graph. For all
: interfor faces f in the embedding of G, ¢(f) = (n-2).180°, and for the unique
exterior face f,. ¢(f,) = (n +2).180°.

'.n
'_-_f.:j Proof: Consider the embedding of G. The faces of the embedding are deter-
mined by G, and are simple polygons in the plane. By the definition of ¢, for
A every interior we count the interior angles, and for the exterior face we count
the exterior angles. The lemmma follows. ( Remember that if G is a simple cycle,
the embedding has two faces ). »
T
r==" r===9 W ! :
] ] ] |
] (Y [ {
{
| | ( b !
@ | ®&
' | ' j
—————————— —t L— — e - o - o w a wb
Figure 5.4
Shapes Uand W
( Lemma 5.4: Let G be an embeddable biconnected rectilinear graph, f, the
exterior face in its embedding and v a vertex on f,. If ¢, (v) = 180° then G
v can be embedded inside a polygon of shape U, as shown in figure 5.4a. If
"j ¢s, = 270° then G can be embedded inside a polygon of shape W, as shown in
- figure 5.4b.
W | Proof: Easy and left to the reader. s
58
,w N 6. Articulation Vertices
' ’ o In this section we examine the conditions under which the embeddability of
- { the biconnected components of the graph implies the embeddability of the
2% graph itself. Clearly, this will depend on the way components meet at articula-
. :::; tion vertices. In figure 3.2, we showed two cxamples of nonembeddable rectil-
A inear graphs, each of which decomposes into two embeddable biconnected rec-
*'.’,_ 3 tilinear graphs.
) '7‘ ‘ In those cases, the two biconnected components are not “"compatible” at
:-r the articulation vertex. However, the situation need not be so local. Figure 6.1
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Decompositions of nonembeddable graphs

depicts two nonembeddable graphs, each of which decomposes into three
embeddable biconnected components, so that the components meeting at each
articulation vertex are compatible. Note that an edge is a (trivial) biconnected
component.

If v is an articulation vertex in a graph G, then its removal results in
several connected subgraphs G; of G. We will refer to the subgraphs G +v, as
the subgraphs meeting at v. Throughout this section we will implicitly assume
that we are dealing with rectilinear graphs whose biconnected components are
embeddable.

Definition 6.1: Let B, and B; be two nontrivial biconnected components of a
rectilinear graph G that share an articulation vertex v. Then B, and B, are said
to tnteriace if the horizontal edges at v belong to B, and the vertical edges
belong to B:. We also say that v is an tnterlace vertex. Any articulation vertex
that does not have this property is said to be intsriace-free.

Lemma 8.1: A rectilinear graph G which has an interlace articulation vertex v is
not embeddable.

Prool: Let B, and B; be the two biconnected components sharing the vertex v.
Since B, and B; are nontrivial, the horizontal edges at v lie on a cycle in B, and
the vertical edges lie on a cycle in B,. It is impossible to draw G on the plane
without these two cycles crossing. «

Definition 6.2: Let 5, and B; be two non interlacing biconnected components of
G that share an articulation vertex v, and assume B, is nontrivial. Then B, is
said to be inside B, ( or B, dominates B, at v ) if either (i) v is not on the exte-
rior face of B,, or (ii) edges (v,u) and (v,w) at the vertex v are on the exterior
face of B, and u,w are consecutive in that order in L¢(v) ( note that they are
always consecutive in Ly (v) ). If neither B, dominates B, nor By dominates B,

then B; and B; are said to be outside each other.

........

-----------



The intuition behind the above definition is that in the embedding, one
biconnected component must lie wholly inside some face of the other if one
edge of it does. This is due to the plenarity criterion Clearly, if biconnected
components B, and Hp that share an articulation vertex v dominate each other,
the graph is not embeddable ( this is the case in figure 3.2b ).

Let B, and B; be two biconnected components of a graph G that share an
articulation vertex v, such that H; dominates Bp. Let G’ be the subgraph of G
meeting at v, that contains Bz. It G is embeddable then in any embedding of G,
all of G' should lie inside one face of B,. This suggests extending the relation
"dominate" as follows:

Definition 6.3: Let B = {5, B, : - - ,Bm{ be the set of biconnected components
ol G. We say that B; dominates By if there exists a biconnected component 5,
and an articulation vertex v, such that (i) B, and B; share v, (ii) B; dominates
B, at v, and (#ii) B; and B, are both subgraphs of the same connected sub-
graph meeting at v,

Let us denote by V(G) the vertex set of the graph G and by E(G) the edge
set. )

Lemma 6.2: If in a rectilinear graph G, there exists some pair of biconnected
components F; and B, that dominate each other, then G is not embeddable.
Proof: If B, and By share an articulation vertex v, then as mentioned earlier G
is not embeddable. Suppose that &, and 5, are disjoint. Since &, and 5, dom-
inate each other, there must be articulation vertices v, vp. biconnected com-
ponents B,'.B;', and subgraphs G,,Gg, such that for i = 1,2, (i) B; and B;' share
v;, (i) By dominates B;' at v;, and (¢if) G; is one of the subgraphs meeting at v;
and contains B;'. Let us assume that G is embeddable. From (i) vg € V(G,).
(i) G, lies wholly inside B, in the embedding, and (iii) V(G,)NV(B,) = {v,}, we
can conclude that v, must be properly inside a polygon defined by the face f, of
B, containing v;. Similarly v, should be properly inside the polygon defined by a
face f o of B, containing v,. Therefore some vertices of f, must lie outside f,
and the two faces must intersect, and hence G is not embeddable. =

Given a rectilinear graph G, with set of biconnected components B and set
of articulation vertices A, we can construct a tree 7 of biconnected components
such that V(T) =AuB and E(T)=§(v.B) |v €A B € B v € V(B)|.

lemma 6.3: Let G be a rectilinear graph with the set of biconnected com-
ponents B and tree of biconnected components T. Let B be a leaf in the tree T
which is adjacent to an articulation vertex v of degree 2in T. I B dominates B'
the other biconnected component adjacent to v in T, then F dominates every
other biconnected component in B.

Proof: The only two subgraphs meeting at v are B and G-BF+v and the proof
follows from definition 8.3. »
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If no two biconnected components dominate each other, then the relation
"dominate” induces a partial order or B. A nondominating element in this partial
order is a biconnected component which does not dominate any biconnected
component.

Corollary 8.1: If for a rectilinear graph G, "dominate” is a partial order, then
there exists a nondominating biconnected component which is a leaf in the tree
T of biconnected components.

Proof: Any trivial biconnected component ( which is just an edge ) must be non-
dominating. )f any vertex in T ( corresponding to an articulation vertex in G ) is
adjacent to two leaves, then either the two leaves are nontrivial and not dom-
inating, or one of them is a trivial biconnected component. If no vertex in 7 is
adjacenl to two leaves, then all leaves are adjacent to vertices of degree 2, and
there are at least two such leaves. If two of these leaves are dominating, then by
lemma 6.3 the two leaves dominate each other which is a contradiction that
"dominate” is a partial order. In fact all of these leaves must be nondominating. =

Theorem 8.1: Let G be a rectilinear graph and B its set of biconnected com-
ponents. G is embeddable if and only if

(i) every biconnected component B in Bis embeddable,

(it) every articulation vertex in G is interlace-free, and

(¢ii ) "dominate" induces a partial order on B.

Proof: The necessary part follows from lemma 6.1 and lemma 6.2.

The sufficient part is shown by induction on the number of vertices. The
basis for induction is any biconnected rectilinear graph. Let G be not bicon-
nected with |V(G)| = n. Assume that the claim is true for all smaller graphs.
Look at the tree T of biconnected components. By corollary 6.1, there exists a
leaf B in T which is nondominating. Let v be the articulation vertex shared by B
and G' = G—-B+v, the rest of the graph. &' being a subgraph of G also satisfies
the conditions of the claim. By induction hypothesis G' is embeddable. By condi-
tion (i), B is also embeddable. If B is a single edge it is easy to add the edge to
the embedding of G'. Assume B is nontrivial. Since B is nondominating, v must
lie on the exterior face f, of 5 and gy (v) # 80° (why?).

Embed G’ and B separately and consider the vertex v in both embeddings.

It p,.(v) = 180°, then v is on only one edge in G'. Add- new grid lines to the

embedding of G', create the shape U as shown in figure 6.2a, magnify the embed-

ding, and embed B in the U as in lemma 5.4a. If w.(v) = 270°, then v is either

on just one edge in &', or on two perpendicular edges in G'. In both cases, add
new grid lines, create the shape W and embed B as shown in figure 6.2b. =

Before we describe an algorithm for testing embeddability, we need an algo-
rithm for testing whether “dominate” is a partial order on the set of biconnected
components. From the tree T of biconnected components, we construct T a
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. { partially directed tree as follows. Assume that no biconnected component dom-
3 o inates and is dominated at the same vertex. If so then "dominate’ is not a par-
§s tial order. Direct edge (v.B) from B to v if B dominates at v. Direct edge
-,;‘ (v.B) fromv to B if B is dominated at v. Leave all the other edges undirected.
it This partially directed tree T can be constructed in linear time as follows.
v { Find the faces of each of the biconnected components using the algorithm
W check-biconnected. This takes O(|V|) time. Check for dominations at each
- articulation vertex as described in definition 6.2. There are at most 4 bicon-
f.' nected components at each articulation vertex and hence there are at most 12
3-: (ordered) pairs to be tested for domination ( in fact only 2 tests are necessary,

{ how? ). Construct T by directing the edges of T as described earlier. Note that

M articulation vertices and biconnected components can be found in O(|V]) [1].
. t,',, For each vertex z in T, denote by di,(z), dyy:(z), and d(z), the number of
G- incoming arcs, the number of outgoing arcs, and the number of undirected

-

edges respectively. The rest of the algorithm is given below.

Algorithm check-dominatepo(G).

LA

-

N begin
e construct T
5> for each vertex z in T do
! if dn(z) > 1 then
oY begin
o write ( ‘not a partial order’ ),
> ut
-..: end,
oy ¢ tf search (T) them write ( Yyes, partial order’)
- else write ( ‘not a partial order’)
:;-. end;
-
'::: funetion search (T): boolean;
' begin
o if 7 = & then ssarch:= true
5
C}
L) h!

n




. . Py et
t&‘:&.k‘ . : R

»

£33

b

& & %

{8

'I

DA N )
-‘a:l'. WY 1CRT
: L’ ..' ¢ '-'«I..n' * A

» 0

0t 'f
N %0

.
L

R

%)
.l'-

A .
PR NV iy

LN

“"- ;’c

else begin
it 3 B € Bwith dgy, (B)=0, da(B)+d(B)=1 then
begin
let v be the neighbor of B;
if dyy (v ) +dyug (v)+d (v )=1 then search.= search(T-{B})
else search:= search(T—-{B v})
ond else search:= false

end

The above algorithm can be easily shown to be correct using definition 6.3
and corollary 6.1. The boolean function search can be implemented nonrecur-
sively to run in linear time by maintaining a queue of the leaves of T.

Given the biconnected components and articulation vertices, checking that
the articulation vertices are interlace-free can be done in O(|V]|) time. Let
check-interlace-free be a procedure that checks & given articulation vertex for
interlace-freedom. We end this section with a O(|V|) algorithm for testing
embeddability of rectilinear graphs.

Algorithm check-rectilinear(G);

begin
Decompose & into its biconnected components;
for each biconnected component P do check-biconnected(B),
for each articulation vertex v do check-interlace-free(v),
check-dominate-po(G)

end

7. An Embedding Algorithm

In the previous section we gave an algorithm for testing embeddability.
This algorithm can be easily modified into an algorithm which gives an embed-
ding. However, the complexity of this naive algorithm would be 0{| V|?). The rea-
soning is as follows. The path P’ that we find in the proof of theorem 5.1 could be
O(]V]) long. For each topological action that we apply on this path to transform
it to the path P, we update the coordinates of the vertices in the embedding
once. Thus for each path added we require O({ ¥|?) time. There can be O(|V|)
such paths and hence the complexity of the algorithm is O(| V|3). To reduce the
complexity to O(|V|)%), we have to make sure that the path P’ is never longer
(asymptotically) than the path P. In this case the sum of the lengths of all such
paths P’ is O({ V]), and the O(| V|®) complexity follows. In the following, we show
how we can always find such paths, describe the algorithm, and analyze its com-
plexity.

lemma 7.1: Let G be a planar biconnected multigraph with minimum degree
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three. Then any embedding of G has an interior face of size at most five.
Proof: The dual G of G is also a planar graph. Since G has minimum degree 3,
G? is a simple graph. Hence G*® has at least two vertices of degree 5 [2]. G is

biconnected and hence one of the vertices must correspond to a face of size < 5.
a

Lemma 7.2: Given an embedding of a planar biconnected graph G, which is not &
cycle, there is a simple path P, such that (i) the interior vertices of P all have
degree 2, (1) the end vertices of P have degree > 2, (iii) P appears in an inte-
rior face f in the planar embedding, and (iv) 5.|P| = |f |.
Proof: As in the proof of lemma 5.2, transform G to G' by replacing all paths
with property (i) and (i) by edges. By lemma 7.1, G' has an interior face f of
size at most 5. The longest of all the paths in G corresponding to the edges of f
will satisfy conditions (i) and (iv). =

To get an embedding of a given rectilinear graph, we first test if the graph is
embeddable and then apply the following algorithm.

Algorithm embed-rectilinear(G),

begin
for each biconnected component B do embed-biconnected (B).
join-the-embeddings,

end

Algorithm embed-biconnected(B),
begin

getlong-path ( P, P,, o).

embed-biconnected ( B — P )

Jind-path-in-embedding ( P', P,. 0 );

apply-actions-and-transform ( P', P )
end

Procedure getlong-path returns paths P,P,, and square ¢, such that P
satisfies the conditions of lemma 7.2, and the interior face f = PP, simplifies to
0. By lemma 7.2 such a path exists.

Procedure find-path-in-embedding traces a path P' in the embedding of
B-P, such that P' starts and ends in the same directions as P, and P'P,
simplifies to ¢. P’ and P are both complements of P, with respect to the square
c. Since PP, is an interior face, P’ can be obtained by starting in the required
direction, then following the path P, in the embedding of B—P, and ending in
the required direction (figure 7.1). This will result in P’ being a complement of
P, with respect to 0. We have |P'| = O(|P,]) = O(|P]).

Procedure apply-actions-and-transform applies a sequence of the four
topological actions to P' in the embedding of B—P+P' and transforms it to P
thus resulting in a embedding of B. This is done by first simplifying the path P
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¥ i" Path addition, simplification and expansion
IN . and then expanding the simplified path to get the path P (figure 7.2). The
number of aclions applied will be O(|P|+|P'|) = O(|P]).
t" Procedure join-embeddings takes the embeddings of the biconnected com-
:}. ponents and puts them together to get an embedding for G. This is done essen-
:.‘(’ tially following the proof of theorem 6.1. Find a nondominating component B.
" { Recursively embed G'= G — B. Join the embeddings of B and G' using the
~ shapes U or W as shown in figure 6.2
.:Ef The algorithm can be shown to be correct using the material developed in
A the previous three sections. We now analyze the complexity of each step in the
.‘::; algorithm and show that the total complexity is O(| V|?).
| Procedure join-embeddings updates each coordinate at most once per
~ recursive call. The total number of calls is bounded by the number of bicon-
W nected components. Hence this procedure takes O(| ¥|® time.
::: Procedure get-long-path can be implemented to run in O(|V|) time each
: time it is called. Remember that we can get the faces of a biconnected graph |
] t from the testing algorithm, and searching all faces to get the required face |
.. takes linear time. Procedure find-path-in-embedding takes O(|P,|) = O(|V])
2 time. These two procedures will be invoked at most O(|V|) time. Hence total
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time spent in these calls is O(| V|¥).

Procedure apply-actions-and-transform applies a sequence of O(|P])
actions. Each edge in G will appear in only one such path P. Hence the sum of
the lengths of all such paths P is O(|V|). Each action updates at most O(| V{)
coordinates. Therefore the time spent in calls to this procedure is O(|V|%).

8. Consistent Rectilinear Graphs

Certain rectilinear graphs cannot be drawn on the grid even if we relax the
planarity criterion. We say that a rectilinear graph G(V,E.\) is consistent if it
can be drawn on the grid satisfying the ordering relation A. In other words, G is
consistent if the set of equality and inequality constraints generated in part 1 of
definition 2.2 is consistent.

The equality constraints define an equivalence relation on the set of coordi-
nates of the vertices of G. Let us denote by e (z) the equivalence class contain-
ing the coordinate z. Denote by /; and J, the sets of x-coordinate and y-
coordinate inequality constraints respectively. Construct two directed graphs
G (Vz.E;) and G, (V, .E,) as follows:

V. =te(z) |z =z(a).a € Vjand B = {(z,29) | £, > zp € Lu}

¥, and E, are similarly defined.

It can be easily shown that G is consistent if and only if the two directed
graphs G and G, are both acyclic. A solution to the coordinates which satisfles
the constraints will correspond to a nonplanar embedding of G on the grid. This
can be obtained by performing the topological sort operation [4] on the two acy-
clic digraphs. In fact this will yield a solution that minimizes the area of the rec-
tangle bounding the embedding.

In a nonplanar embedding of a consistent rectilinear graph on the grid, all
crossings are between horizontal edges and vertical edges. The vertical edges
can be assigned one layer, and the horizontal edges can be assigned a second
layer. In other words the 'thickness' [2] of a consistent rectilinear graph is less
than or equal to two. A generalization of the rectilinear graph embedding is the
problem of embedding a rectilinear graph with layers preassigned, in which no
two edges belonging to two different layers cross. This remains an open prob-
lem.

9. Extensions and Open Problems

As mentioned in the previous section, the embedding problem for layer
assigned rectilinear graphs is still to be solved. This has important applications
in VLS]. It is easy to show that if a rectilinear graph is allowed to be discon-
nected, then the optimal area embedding problem is NP-complete ( reduction
from two dimensional bin packing ). However, the question is open for con-
nected rectilinear graphs.
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On a more theoretical side, we can define ‘triangular’, 'hexagonal’ and other
polygonal graphs, and consider the embedding problems on appropriate grids.
However, it seems that the work in this paper does not generalize easily. This is
mainly because these polygonal graphs lack the nice simplification properties of
rectilinear graphs. Geometry seems to dominate over topology in these polygo-
nal graphs.

We conclude with a note that our O(|V|®) embedding algorithm will be
implemented in ALl In All, layouts are described in a hierarchical fashion, and
hence the algorithm can be applied hierarchically on a cell by cell basis. In this
case the complexity of obtaining the embedding is the sum of the quadratic
complexity over all cell instances.
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Abstract We assume that long wires represent large
capacitive loads, and investigate the effect on the area of
a VLS] lasyout when drivers are introduced along many
long wires in the layout. We present a layout for which
the introduction of drivers along long wires squares the

the resistance of a long wire can be ignored and that the
wire can be viewed as a large capacitive load whose capa-
cilance is proportional to its length. This view is also
presented in [MR79] and is supported by Bilardi, Pracchi,
and Preparate [BPP81] who solved the diffusion equation

TN area of the layout; we show, however, that the increase in for a long wire and suggest that, for predicted future
Y area is never greater than this, if the driver can be laid guins in technology. the wire can, indeed, be modeled as
47 out in & square region. We also show an area-time trade- e purely capacitive load. For such a load, it is weli-known
- off for a single long wire by which we can reduce the area that the delay can be reduced to the logarithm of the

™ M of its driver to 8(1?).g <1, from 8(1). if we can tolerate a capacitance by introducing a sequence of drivers which
"l delay of 8(1!~?) rather than 8(log {); and we obtain tight occupies ares proportional to the capacitance [MC8G).

i bounds on the worst-case area increase in general lay- In this paper, we assume that the wire can be

X outs having these drivers, using the Brouwer fixed-point modeled as a purely capacitive load. We address the fol-
~. theorem. We also derive results for the case when drivers lowing question that arises naturally in this context, but

are embedded in rectangles that are not square. Finally,

has not b mined before: Wha! is the t th
we extend the use of our upper-bound technique to other sen exe O g 2 effect on the

grea of a layout whan drivers are introduced fo speed up

h

-f:: layout problems. along many long wires? We justity our
i eupncitivc-modei luum:rﬁon by appealing to the simula-
tion results of [BPP81]. Further, if a long wire must,

. i 1. Introduction indeed, be modeled as an RC-network. then the introduc-
O tion of repeaters to reduce the delay will increase the
:‘ The presence of long wires in a VLS] layout siows area only by a constant factor. This is because such
K down the performance of the circuit due to signal prope- repeaters are of constant size, and a long wire may thus
'.ﬁ gation delays. This effect can be minimized by using & be modeled as & sequence of short wires connected by
) driver at the bead of each long wire. However, the nodes of fixed size. In the ceapacitive model, on the other
N "f drivers themselves occupy spsce, and the question band, the area occupied by a driver increases with the
. { arises whether drivers can be introduced efliciently length of the wire it drives, and thus, drivers cannot be
. when there are manv long wires in a lavout. For exam- abstracted as constant-size nodes. In fact, we show that
4.:_ U ple, consider Lthe simple case of a long bidirectional wire. there can be definite area penalties when there are
N A driver needs to be introduced at each snd of the wire, many drivers in a layout. Our results are of particuler
N and the presence of each driver increases the length significance for upper-bounds in area-time products for
W along which the other driver has to drive the signal. A VLSI layouts, since most previously derived bounds have
Ny large network with many long wires may contain several ignored the delay along long wires. Either linear delay
) instances of mutual interactions of this and other kinds, should be assumed along connecting wires (this would
- t and it is not clear whether drivers can be introduced in represent either "RC” wires with repeaters, or "capaci-

P

.
XL

'~

an area-eflicient manner under these conditions (or even
whether they can be introduced st all). This is the prob-
lem we analyze in this paper.

The question of delays along long wires is @ complex
one, and no consensus has been reached as yet on the
correct way of modeling this. Some papers (e.g.. [BX80),
[V80]) assume that a constant propagstion delay models
the current situation quite well. But it is generally
accepted that this is not a good approximation of the
physical situation. Mead and Conway [MCB0] and
Chazelle and Monier [CMB1] suggest that a wire is basi-
cally a distributed RC-network, and the delay thus is pro-
portional to the square of its length. This delay can be
reduced to a linear delay by using repeaters along the
wire. Linear delay is also the asymptotic imit imposed
by the speed of light. Thompson T80, T81] suggests that

This research was supported in part by NBF under Gramt MCS-
6203003, and in part by DARPA under ONR NOOO1 ¢-8R-K-0049.

tive" wires without drivers), or the area expansion
caused by drivers for capacitive wires should be taken
into consideration; alternatively, some intermediate
design for drivers can be used from the spectrum of
designs we suggest in seclion 4. But upper-bounds
derived using constant delay along all wires, and no area
expansion for drivers do not model the physical situation
well.

For a wire of length I, the most familiar type of
driver occupies 8(l) ares while reducing the delay from
8(l) to &(log ). In this paper, we present s layout for
which the introduction of such drivers along long wires
sguares the area of the layout; we show, however, that
the increase in area is never greater than this, if the
driver can be laid out in a square region. We prove the
upper-bound by a new technique that uses a fixed-point
theorem; we believe the proof technique is important in
its own right. We also show an area-time trade-off for a
single long wire by which we can reduce the area of its
driver to 8((?),q <1, from 8(l). if we can tolerate a delay
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of 8{1!7) rather than 8(log ); and we obtain bounds on
the worst-case area incresse in general layouts having
these drivers. asgain using the Brouwer fixed-point
theorem. We also examine the case when drivers cannot
be laid out efliciently in square regions.

The paper is organized as follows: Section 2 presents
the VLS| model we use. In section 3 we present s graph
on n? vertices with 8{(n) long wires for which the layout
sres sxpands from 8(n?) to O(n?) after introducing
drivers for the long wires. Ssction 4 examines the ares-
time trade-off for drivers. and sections 5 and 6 use the
Brouwer fixed-point theorem to find general tight upper-
bounds for the area expansion causcd by drivers in arbi-
trary layouts. Section 7 generalizes the technique to
other layout problems, and section 8 concludes the
paper with a review and some open questions.

2. The Modsl

We assume s layout model similar to the one used
by Thompson[T80] and Leiserson{L80]. The VLSI circuit is
abstrected as e graph having bounded vertex degree and
it is embedded on a planar grid subject to the following
constraints:

1) Eech vertex represents a processing element and
occupies a constant ares. Distinct vertices of the graph
are embedded at distinct grid intersection points.

2) Edges have unit width and are routed along grid lines
with the restriction that no two edges touch one another
except possibly when crossing perpendicular to each
other. Also, an edge cannot be routed over a vertex it
does not connect. Each edge represents a connecling
wire. We will refer to an edge as a wire or a line.

We assume that we are given such e layout for a cir-
euvit with certsin edges identified as long wires. Note that
the number and positions of long wires is layout-
dependent, and the same circuit mey bave another lay-
out with shorter lines. We shall not go into the question
of derigning layouts to minimize the presence of long
lines. Some work bas been done on minimizing the length
of the longest line in a layout for certain classes of
graphs ([PRS8:). [RS81), [BLB2]), but. as we mention in
section 8, the minimization criterion in our case is &
different one, which bas not been studied so far. We will,
therefore, assume that the layout is given, and we will
introduce drivers wbhere needed by making local sspan-
sions without distorting tbe layout configuration.

A long wire is s bidirectional element electrically,
but ir. & VLS] circuit, it usually connects sctive unidirec-
tional devices, so that the signa) always originstes at one
fixed end of the wire (vhich we will call the Asad of the
wire) and propagates towards the other end. For the rest
of this paper, we assume that wires come with the direc-
tion of signal flow specified, and that bidirectional wires
are decomposed (conceptually) as two edges connecting
the same vertices. but having opposite signal fiow.

As mentioned in tbe introduction, we assume that
the line is pursly capacitive, and the delay thus grows
linearly with I, the length of the line. This delay can be
reduced by using drivers to spsed up the signal. Many
different types of driver designs are possible, and they
differ in the signal speed-up they offer, and the area they
ococupy. We analyze these Llime-space trade-offs in sec-
tion 4. For the present, we assume the most familiar
type of driver, which reduces the delay to ®{iog L) st the
expense of occupying 8(1) area. We also assume that the
driver can be laid out in & squars of side kV1, for some
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figure 1
A driver introduced along
part of a long wire

constant k. This is not strictly true, since the driver has
a transistor whose channel is 8(l) wide, and bence it is
more nsturally laid out in & long, narrow rectangle.
Clever design methods, however. such as the use of a
zig-zag poly line for the gate in MOS technology. can be
used to overcome this problem. We bave more to say on
this point in section 8.

cut 1
4 >
A >
MER
v
<-kVI->< ] >
» f #
driver & l/'l
figure 2

Introducing a driver by making
cuts in & layout

Civen s long line w of length ! in & layout, en area-
efficient way to achieve signal speed-up would be to
introduce a long skinny driver (the natural design) along
a portion of w (see figure 1). However, ViS] layouls are
dense in general, and Lthe above scheme will not work if
there are vertical lines present in this region. In such a
case, we make two "cuts” or “slices” (s notion introduced
by Leiserson [L80]) at the head A of w, each kv] wide,
one sach in the vertical and horizontal directions (figure
2). Any edge thst is broken by the cut is then joined
across the cut by s straight line. This forms & square
region of kVI side st A with no edges or vertices from
the original layout. We introduce the driver in this
region. Thiz construction does not disturd the layout
configuration, and introduces the driver by local expan-
sions. It increases the length of each side of the layout
by the size of the cut. /f also increases by &VI, the
langth of sach Aorizontal wire in the layout which tnter
sects the vertical line drawn through A end each vertizal
wire tha! intersects the Aomszontol line drawn through h.
These other wires will now require larger drivers than the
ones they would bave needed in the absence of & driver
at A. The introduction of drivers at these other lines will,
in turn, affect the lengths of more lines, and could even
incresse the length of w 20 thet the area of its driver
would have to be revised upward.
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¥We are now in a position to state the problem we are
going (0 analyze:

Given g VLS!/ layout unth certain edges specified as
long wires, what is the increase in the area of the layout
tn the worst case when drivers ars ussd fo speed up 8ig-
nals along thase long wires”

3. A Vorstcase Example

Consider the graph layout of figure 3. It consists of
s square mesh on n? vertices (assume n even), logether
with /2 long horizontal lines w,;, wp, * * - g e ) we
assume the vertices to be laid out in an nxn grid (tbere
will be a alight expansion nesded to accommodate the
long wires along grid lines, but we can ignore this for
“order-of-magnitude” arguments) and let m=n /2, then
w, runs from vertex (m.1) to vertex (n.1), wy runs from
(m~12) to (n=-1,2),- ' -, and w,, runs from (1.m) to
(m +3.m ). The signal goes from left to right along each of
these of these lines.

{in) n.n)
$
>
>
b
(1.1) }n.n
n=6
figure 3

A graph layout with 8(n?) area and 8(n) long lines
of length 8(n) each

We consider now the increase in the area of the lay-
out when we introduce drivers on wires w; to wy,. Notice
that the presence of the underlying squere-mesh struc-
ture forces us to make cuts to introduce the drivers.
Since n/2 drivers are introduced diagonslly, and the
length of each wire is 8(n) to start with, the Ien’th of
sach tide of the layout increases to at least 8(n n!/?), so
that the ares of the layout incresses from 8(n?) to st
least 6(n?). However, this does not account for the
increase in the lengths of some wires due to the intro-
duction of drivers on otber wires. We now derive a non-
linear recurrence relation Lhat accounts for this effect,
and use it to bound the increase in area as 9(n*).

Since the signal travels from lefl to right along sach
of the long wires, the length of w, is not affected by the
introducticn of drivers st the heads of the other long
wires. In general, the length of w, increases by exsctly
the lengths of the drivers introduced on w; to w,_,. }f we
let d, be the width of sach side of the driver for wire w,,
then we have

d,zkm e
dysk(maed,)/"

;.8* (m 0%‘,)"'
I

e

-3-

-
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Let 5 be & new variable defined by

8;3m +d,
..‘m "1*"

s=m ¢+ t d,
5=
it L L
sa_+k(m +‘f¢,)"'
(31

=gtk \/tT.‘.

For convenience, define sg=m. Note that s,+{ gives the
width of the layout from the rightmost end to the left
ond of the (th driver, and s, +m gives the length of each
side of the layout after the introduction of drivers on all
.of the long wires. We find bounds for this value below:

lemma: There exist constants &, and kg such thet for
any integer m >0,
kyit+m 2 5, ® k,i%m ftori 2V .

Proof We prove both sides of the inequality by induction.

Assume sxk,it+m
Since s¢gzm, the assumption holds for s, for all values of
&,. Assume the result holds up to s;. Then,

W XTIV
* tk,i'nn;k(k }t'«tm)" *
>k i%em ki MY
wk,(i+1)%4m +(kk }/t -2k )ik,

Hence, &, em ¢k, (i+1)® for k,<(k/4) and for
sufliciently large i. For &,£(k%/9), the result holds for
all values of i. So we have s, 2(k%/ 8)i2+m for all 120,

Assume s, skoitem
Assume the result holds up to s,. Then,

8o =8 vk Ve
wkoifem +k (k .('-Om)" 2
skot?em +k ((kg+1)i¥)2 for izm V2

ko{i+1)2em =(2k g~k (ko+ 1)V ¥y =k
:k:(:ﬂ)’ﬂ': for t',t(k’;B)(hVHJS/k’).

Hence we have s,8(k%/8)(14+V1+16/k%)item for
t2vm. For i=Vm , we need s mskagm+m, and since
Syz <mekVm Vm ek (J+k)m, the inequality holds
when kexk V1+2k skl

Therefore, s;skyi'tm for _ all _i>vm
kgnmax( (kt/ B)(Vi+16/kY) . kVI+Ek 428 ).

The required resull follows from combining Lhe two
inegualities.s

Thus, the width of the layout after the introduction
of drivers, which is given by s, +m. is 8(m?)=0(n?) end
the area thus grows to exactly 8(n‘). the square of the
initisl area. The widlh of the driver for u, is given by:

“Eh (m *E", )l,.
1

=k V&, s
=8(s ), for iavVim .

whan

Hence there are §(n) drivers of width 8(n) in this ley-
out. Nole also that many of the short wires have their
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lengths grsatly increased by the introduction of drivers
for wires w, to wy. For instance, the wire connecting the
vertex (l.n5 to the veriex (2.n) bas its length incressed
from 1 grid unit to (n) grid units. Ws may now want to
introduce drivers for these wires, too. but since we o
deriving a lowsr bound in this section, we will ignore this
point.

The layout of figure 3 is simple in the sense that it
has no mutual interaction: there do not exist wires wy
and w; such that the driver of w, increases the lengtb of
w; and the driver of w; increases the length of w. In
general, we could have & more complex pattern of long
wires in which such mutus)] interactions occur in many
weys. However, in section 6, we present the surprising
result that the penaity in area never becomes worse
than the square of the original area

4. Area-Delay Trade-off for a Driver of a Long Wire

When a large cepacitive load ¢; is driven by an
inverter with resistance r(, the delay is the product ric;
(note that v, here refers to an "sverage’ resistance,
since the resistance and the delay vary depending on
whether the input is low or high. In what follows, we
make some other simplifications of the physical situa-
tion, but these will affect the constant factor only. so
that tae "order-of-magnitude” results hold). If the resis-
tance and capacitance of a minimum-size inverter are r;
and c, respectively, then the basic unit of delay is t =r,c,
and this represents the delay when s minimum-size
inverier drives the gate of another minimum-size
inverter. In terms of this unit £, & minimum-size inverter
driving a load capacitance ¢; causes a delay of ¢ /¢,
and this grows linearly with the load capacitance. When
the load is e long wire, this delay grows linearly with 1,
the length of the wire, assuming the width and thickness
of the wire remain fixed.

_p..__.——__D‘.,

€15f1'¢ ce=f v Sety
"er/ S, re=r/ f 3 S

channel width of inv. 1 = £ ,- (minimum channel width)
channe| width of inv. 2 = f4 (channel width of inv. 1)

figure 4
Delay on one stage of a driver sequence

T5 reduce the delay to more scceptable levels, we
use @ sequence of drivers with successively wider chan-
nels to drive the load capscitance. To understand why
this scheme works, consider the deley when one inverter
with channel width £, times the minimum-size inverter
drives the gate of another inverter whose channel is f,
times wider than that of the driving inverter (see figure
4). The resistance of the first inverier is r,/ f; and the
capacitance of the second inverter is f,fqc; and hence
the delay of this stage is fgt. If we now have n inverter
stages, starting with a minimume-size inverter as the first
stage, 8 driver with a very wide channel as the nth stage
to drive ¢;, and intermediste stages with successively
wider channels, than the total delay is the sum of the
delsy through the n stages. Let £, be the ratio of the
channel width of the i +1st inverter to that of the ¢th
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inverter for i=1.2, - - - m~1, and let f, be the raticof ¢,
to the capacitance ¢, of the last driver (figure 5).

channe] width

(normalized) 1 #, $ SV L MR £

(cap. = c,) If;

figure 5
A wsequence of drivers for load ¢,

We bave £,f3" - - fa=c1/¢; and the total delay through
the n atages is T=(f ,¢fg¢ - - - ¢S, ). If we fix each f,
to be eoqual to & constant f, then the delay
T=logy(c/¢;). and this is the minimum deley we can
obtain up to a constant (see [MC80]). However, the ares
occupied by the drivers in this case grows linearly with
¢;. as we gshow beiow, and it may be desirabie to reduce
this area pensity at the sxpense of a slightly greater
delay. We ghow below that such & space-delay trade-off
exists. Some of these resuits are implicit in the work of
Lin and Linholm [LL75] and Jaeger{J75).

Let the ares occupied by a minimum-size inverter
be A,. Then., an inverter whose channel is f tines as
wide as a minimum-size inverter requires an area of
about fA,. Hence the total ares 4 occupied by the
ssquence of drivers with logarithmic delay is given by

AsA(14f 402 - af™)
'9(!"),
39(01).

Now, consider the general sequence of drivers described
sbove. The area occupied in this case is

LT NeLT AT &Y SO REEE S 59 SEIIES fy )

Assume that we can tolerate s delay of 8(19),0<g <1
(=8((c.)?)). Since the area of the last driver dominates
the above expression for area, we look for the smallest
size for the last driver which will still result ir: a delay of
not more than B(1?). Since c,=c;/f,. and the delay
through the last stage is f,t, the best we can dois to set
Ja=8(17), and this results in an sres of 8(1'*Y) for ¢,.
Now, the question is whether we can accommodate the
otlher drivers to occupy not more then 8(1'°?) area and
cause no greater than 8(l7) delay. The answer to this is
‘yes’, and in fect, we can accomplish this in many ways.
We describe one method of doing this, which minimizes
the constant on the delay term. For this. we meake ¢,
the load so that we need to drive a load of 8{1!°?). We
know from the design for drivers with logarithmic delsy,
that this can be done w.th 8{(1-g)log {) deluy and arca
O(1'7) using 8((log r. 7 ¢,)) steges. Hence the total arca
for the n stages remains 8(1'Y) while the delay it incre-
mented by only a 8{log {) term and bence remains 8(1*).

We have thus shown the following interesting arca-
delay trade-off for the driver of a single long wire of
length I: For any g .0<g <1, we con design 8 drmiver with
delay O(I?) and srea-delay product 8(l). Jf. Aowever, we
need to vreduce the deloy (o O(logl). which €5 the
minimum deloy schievable, tAen the area-delay product
goes up to 6(l-log 1 ).
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§. An Upper-Bound Proof Technique Using Fizxed-Points

Lat F(z,.25. ' ‘- .Zn) De & Mmapping from B to ™
defined by

F(zy - am)s{(fEn Zm)  fm(Ey B )

where each f, is 8 mapping from R™ to R Then, &
Jized —point of F is s vector (2, - * - 2 )ER™ such that

Flzy - 2n)s(@ - ) Lo,
Sz, - Em)mz fori=sl, - - - m.

The following are some well-known results from real
analysis (see ¢.g., Bartle [B84]).

Brouwer Fixed-Point Theorem lat 8>0, and let J be the
hypersphere defined by D = {z€R™. |2 {<B|. Then, any
contiruous function with domain D and range contained
in D bas a fixed-point.

Pact 1 Any real continuous function on a bounded closed
set in R®™ has & maximum and s minimum.

Pact 2 For 5>0. the hypersphere defined by D =
fz€R™: |z |<B| is » closed bounded set.

We will need the following two definitions:

Definition } Let f(z,. ' - - .2, ) be 8 continuous mapping
from W™ to R. and let p(z) be the mapping from R* to R*
such that for each R0, g(R) gives the maximum sbso-
Jute value of f in the closed hypersphere of radius
R~m . We call g the dehavisr function of £. Note that by
facts ! ond 2, p always exists.

Definition 2 A function g(z) from R* to R* is sublinsar
in 2 if there exists an v20 such that, for all z2r, we have
g(z)sz. We call v a dreakpoint of the tunction g.

We now prove

Theorem 1: Let F be s continuous mepping from R™ to
R™ given by

Flzy. - an)=(fy(z - zm) S o 2ml)
and for each £, let the behavior function p, be sublinear
in z, with breakpoint r,. Then,

1) the function F hes a fixed-point within a hypersphere
of radius RvVm . where R=maxr,, and

2) each component of the fixed-point is no greater than
R in megnitude.

Proofl To prove 1), it is sufficient, from Brouwer's
theorem, to prove that the range of F is contained on or
within the prescribed hypersphere when the domain is
similarly constrained. For this, it is sufficient to prove
that, for each i, g(R)SR. since this will guarantee that
the Euclidean length of the range is no greater than
vmR But this follows immediately from definition 2,
since the functions g, are sublinear with breakpoints »,,
and for each ¢, rER.

Note that, by requiring g;(R)sR for sach ¢, we are
constraining the range to lie within s closed hypercube
inscribed within the hypersphere of the domain. This
additional restriction cnsures that each component of
the fixed-point ia at most R in magnitude, and this
proves 2), and the theorem.s

In our application to layout problems, and in partic-
ular, to the problem of drivers, we will be interested in a
special class of functions f((2,.: - - &g ):R®<R defined

Te vty .
O

NN

N

by

F ATt Y (R 2 8yx/P. when (L+ ﬂ 84z, )20,
=0, .elrw'ue. = (1)

where k& and I are positive constants. O<p<l, and
0s6ysX. for some positive constant XK. Usually. 4 is
sither 0 or 1. For such functions, we have the following
corollary to Theorem 1.

Corollary 1.1: Let F be & mapping from R™ to R® given
b,

y

F(z,, - - an )= (=) - “Em)e -fu(.’p e Zm))
where the f;'s are given by (1). Then F has & fixed-point,
esach component of which is positive and has magnitude
no reater than R. where
Remax(k (1,0, - - - kp(ln )P ko ym?/0P))  the &3
being positive constants independent ofm.

Prool It is easy to prove that each f¢ has behevior func-
tion g¢(z )S{‘(:. -+ + x). Let r;=(a solution of the equa-

tion k(l+) 6,z =z). Then, since p<1, g, is sublinear

. ,. 1
with breakpoint r,. Hence from Theorem 1, each com-
ponent of a fixed-point of F bas magnitude no more than
R, where R:m‘u 5.

Case] Assume that sach l.‘(z 64v.). Then we require
i1
e‘(ﬂ 4P (rP=r,, for some constant ¢,€2k, or,
i1

qsc}(il‘. ¥/ 0-2), where ¢’ 5(c,)/{'?). The maximum

")
possibi’e value for erch & is X. Hence. each coordinate
of the fixed-point is guaranteed to have s vslue no

rester than R=k,, ,,m?/-%), for some constant k.,
that depends on & and X).

Case2 There exist l's such that each l,>(£6,,r, ).

H
Let I be the maximum value of such l."s. Then
Syr=0(L), and hence we need r =k, P for some con-

3]

‘tcnt &, <2k. Hence, in this case. each coordinate of the
fixed-point is guaranteed to have a valuc st most
Remax(k, .k, , ym?/ (1-7)),

By combining the two cases, the required result fol-
lows. Clearly, since the range of F lies entirely in the
positive orihant, sach component of the fixed-point must
be positives

Corollary 1.2: If ot most r of the §; can be nonzero for
ssch function f, in (1), then each component of a fixed-
point of F is positive and har magnitude no greater than
R.where Remex (k 18, - - kp il kmoy??7 (1 P)).

Proof Immediate from the proof of Corollary 1.1

8. General Upper Bounds for Area Penialty in layouts
with Drivers

We initially assume that a driver for a wire of length
I can be embedded in a square of side ki” (ps1/2)
When p=1/2, this corresponds to the standard driver
with logerithmic delay. Since we are now proving upper
bounds, we will sssume all wires in the layout to be long.
This may be & necessary assumption. since a wire that
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was short initially may become long due to the introduc-
tion of ¢rivers on other wires (s we saw in section 3).

Now, sssume that the lsyout is in an nan’ grid
{(n2n’). Hence the area of the layout before introducing
drivers is A=nn’'. We note the following points about long
lines and their drivers in this layout:

1) if each long line is ! units long, then there are at most
2A/1 long lines in the layout.

- 3 -
< 3 >

figure 6
The position of a cut for a driver

2) The cut perpendicular to the direction of the wire is
always made with the position of the head fixed, and on
the side the wire extends (figure €). Thus, if there are
two wires with their heads slong the same vertical (or
horizental) line end with opposite signal flow, their
drivers do nol overiap the same horizontal (or vertical)
regior. Since this simplifization st most doubles the
effect of drivers st any singie vertical or horizontal posi-
tion, the ‘"order-of-megnitude” results remain
unaflected. Tbe cut in the direction paralle! to the wire
is made on the side of the wire which lies on & clockwise
rotetion from the wire (see again figure 8). With this
convention. we can introduce drivers on all four lines at
@ vertex, if needed.

Iw,

w,
> w;
D=
|

».’!"’! { Wy
I'.:: [IOUREUS— Y.
:.‘ki

d figure 7

The effect of long wires with their with heads aligned

) ?3 ?T.f ?
XXX

3) Consider the situation in figure 7. All of the lines
w, Wy, heve Lheir heads along the vertical line

1

A A through w;. and the signal flow on esch wire is auch that
?'-S 8 cut is required immediately to the right of w, to
ﬁ"'* accommodate the driver for each wire. In such e case,
§1‘.r the wdth of the widest cut is sufficient to include all
80
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drivers. A similar result bolds for horizontal cuts. Note
that this means that we need meoke at most two cute at
each vertical and horizonta) grid position (the factor of
two arises from the convention we adopted in observa-
tior. 2 sbove, regarding the position cf the cut). Thus, et
most 2(n+n’) cuts will be needed to sccommodate
drivers in any nxn’ layout. The widths of the cuts need
to be determined. and we bound these values later in
this section to obtain tight upper-boundes on the worst-
case area expansion caused by the introduction of
drivers.

4) If a wire bends (i.e., goes both vertical and borizontal),
the analysis still holds. We assume. however, that a wire
bends at most s constant number of times, and hence a
wire can bave length no more than An, for some con-
stant X.

5) I & wire is ! grid units long, then its length is affected
by at most 2! other drivers. This worst cese happens
when there are the heads of two long wires (either verti-
cal or horizontal) at each of the -1 inner grid positions
of w, and the signal flow on these wires is directed so
that cuts are required on both sides of the grid position;
and there is 8 long wire at each end grid position of w.
and each of these wires requires a cut on the side
affecting the length of wire w. This situation is shown in
figure 8.

\
o >~
g $o4 >en
-< 3:3 >
-l %:r

length of wire w = 3 units

figure 8
Worst-case eflect of other drivers on the length of o wire w
initially k grid units long

Consider & general layout with m long wires
W Wy, iy Of initial lengths 8,y - - - 4,. A* men-
tioned earlier, bidirectional wires are treated as two
separate wires, with opposite signal flow. Let the driver
for the ith wire bc embecdded in e square of side d,. We
need to solve for the d;'s, i=1.2, - - - m. For this, we
note that the length of the ith wire, L, is increased to &
new value [’ by the presence of drivers on some of the
other wires, i.e., we have

l"sk+26‘,d,. =), - m,
11

where é,; is nonzero if the driver of wire w; increases the
length of w,. and is O otherwise. Since we allow a wire to
bend a constant number of times, a single cut can
expand a wire by up to A times the width of the cut, and
hence & is s nonnegative integer having value no morc
than X. Now, the driver of w, will increase the lengths of
all horizontal wires that intersect the vertical hne
through the besd of w;, and all vertical wires that inter-
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sect the horizontal line through the head of w, (see
figure 9).

v

W,

‘“31.‘.,31.6“"1.‘“30.‘."0. .
The signal flow can be in either direction in
each of wires w, to w,.

figure 9
Determining &

Hence a simple preprocessing of the layout gives the
values for 84.¢.5=1. - - - ,m. Note that we can treat both
horizontal and vertical wires uniformly because of our
assumption that the driver occupies a square region.
Later, we will need to modify our equations when we con-
sider drivers embedded in rectangles that are not
square. The value for each d, is given by

d=k (LY
=t(q+, 6yd; ). (@)
=]

Let us rewrite equation (2) by defining d; in a func-
tional form, and extending its domain to R*™ as follows:

d=fd, - '-‘n)‘k(k*,ﬁidud,)’- =1, - -, m, when
(u,ﬁl 84y d;)>0,

=0 otherwise,

Let F(d,, - - - .dg) be the mapping from R® to R™ defined
by

F(dy - dm)=(f3(dy. - o). fuml(dy - dm))

Then the solutions of the system of equations (2)
correspond exactly to the fixed points of the function F,
i.e., tc the values of d, - - - .d,, such that

F(dy. - - - i )=(dy, - - - d).

From the resuils of the previous section. we can now
immediately derive upper bounds on the width of each
driver. We first determine this for the case when the lay-
out is in a square nxn grid. We later show that this is the
worst case.

Assume that sach [ is [ units long, and hence, from
observation 5, up to 2i of the 64 can be nonzero for each
1. Her.ce, by Coroliary 1.2, each component of the fixed-
point bas magnitude no greater than R, where

Remax(k 1P, - - - kg lP ky . (2P 01-9))
:0(1’/(}-’)).

Hence the width of any driver in this leyout will never

become greater than cl?/{*?! for some constant ¢. The
maximum width occurs in the case when 1=8(n) (since
this is the maximum value for I, by observation 4), and
this width is bounded by cn?/ -®). The worst-case over p
occurs when p=1/2 and in this case the width is O(n).
But we know from the ezample of section 3 that a driver
can indeed become as wide a3 8(n ). Hence this bound is
tight. There can be up to 8(n) wires in the layout (by
observation 1), and hence we may have to make @(n)
cuts in each of the two directions, so that the layout area
will increase from A=n’® to 6(n*)=@(A%). This upper
bound in the increase in area is again matched by the
lower bound of section 3. For p<1/2, the area increases
to O((nV(1-9))2)2 o(41/ 1)),

It im@(n").0<r<1, then the width of each driver is
O(n"™/(1-9)), but by observation 1, there can be up to
8(n®*") such lines in the layout. We thus have more than
O(n ) drivers in this case; however, by observation 3, if we
mske two cuts of width 6(n") at each vertical and hor-
izontal grid position where drivers are needed (there are
at most 4n such cuts), then we can sccommodate all
drivers. Each side of the layout will expand to at most
o(n'*m/ “"’z and the area grows to
O(nt+tp/(1-p))=g(4!+™/{1-P)), Since r<1, this increase is
less than the increase for the case whenr=1.

) we had a mixture of wires of varying length, the
width expansion is still 0(n'/(P)) by the same argu-
ment. In the worst case, we may have to make a cut for
a driver at each side of each vertical and horizontal grid
position. There are 4n such vertical and horizontal grid
positions, and the worst case occurs when 8(n) cuts of
width 8(n?/(1-?)) are required in each of the two direc-
tions. We have thus proved the following theorem:

Theorem 2 If the driver of a long wire of length ! can be
embedded in a square region of side 8(I%).0<ps1/2,
then the area A of any VLS] layout embedded on a square
grid increases to at most D(AY }*?)) with the introduc-
tion of such drivers along long wires.

We have already shown that this bound is tight when
Pp=1/2. We now ghow that this bolds for any p<i/2.

Lemma: If the driver of & long wire of length I can be
embedded in a square region of side 8(I?).0¢<p<i/2,
then there exists a VLS] layout whose area increases
from A to Q(A'/(1~?)) when such drivers are introduced
along long wires.

Proof We use, once again, the layout of figure 3. The
recurrence relation for s, is now

axs . +k(s,,).

with sg=m=n/2. As before, s, ¢m gives the width of
each side of the layout after the introduction of drivers.
We prove by induction that g, = ((m /{/-?2)),

Assume s, 2 ¢ {V/UPlem.
The result bolds for 8¢ for all values of ¢. Assume that
the result holds up to s,.,. Then,

s=e . *k(s, ;)
2e(E=1)VUPlam ek (c(i=3)/Plem )
2e (8 ~1)0Plem kP (i =1}/ 0P
.ﬁull-’)«j-uﬂl/(l-ﬂ
+(k/(c"i))(l-l/()”“‘”)*m
sV U2 1=1/7¢ P/ OP)(1a((k/7c!P)=1)/5)em.
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Since p£1/2, we bhave p/(1-p)<), and hence
(1-3/4ip/0-P)x(1-1/4). Hence,

s2ciV U2 1-1/70)1+((k /01 P)~3)/4)+m

2ci/1-?lem when (22 and cs(k /7 3)V/(1-9),

Ve also need s ;=me+kmPacem. Hence,
sxctVitPlem for all < and for
csmin{ (k/3)/(1?)  km? ). Set m =] in the min expres-
sion to obtain a value for ¢ that is independent of m.

Tne width of each side of this layout after the intro-
duction of drivers is s, +m =}(mV 09))=()(n1/(-2)) and
the required result for the area increase follows.s

Next, we consider the case when the driver is
embedded in a rectangle that is not square. In this case,
we show below that, in the worst case, the [onger side of
the driver dominates the summation in squation (2) by
proving the following theorem:

Theorem 3: Assume that the driver for wire uy of length
& cen be embedded in a rectangle that bas length
a, =kl along ‘be direction of the wire and width b =kl
i the perpendicular direction. }f 0<s.t<1, then the
worst-case increase in the srea 4 of a VLS!] layout on &
squarc grid is max(8(4/119)),8(4¥11~1))) when such
drivers are introduced at the heads of long wires.

Proof Since the driver is no longer symmetrical in the
two direclions, we must now modify the equations for the
Ji's to: ’

0,21 (8 B B yueebn )2k (4 +,£‘(dwc, +8ayd,))

LIS FRLU PR L PRNCAY b Y "El“w 8, +624b;)). (3)

where the domains of f; and f are extended to R®™ as
in the previous case. The §,;'s and the 8y;'s are deter-
mined as before (see figure 8), excepl that the first sub-
script of 1 refers to lines parallel to wire §, and that of 2
refers to lines perpendicular to it. Thus, in figure 8, we
have the following values: 8,5,=1, 8g4=0, 6,);=0. ég); =1,
61cs=1, 8gcy=0, and the other values are all zeros. We
now require the fixed-point of the function

Flay.-am by bm )= 15,0 120 f smo S 23S 2201 om ).

(where the arguments on each f on the right hand side
are @;. ... ,8m.b;. ... .bm.) Again, if each long wire is
6(n") long to start with, we obdtain from Corollary 1.2,
the folowing upper-bound for the width of sach driver:

Remax(8(n™/19)),0(n"/ -1)))
'O(ﬂ""""). where p=max(s,t).

As before, the worst case occurs when r=1, and this
gives us a maximum width of O(n?/(1-?)) for each driver
along its longer side. We still may nced 8{n) cuts of this
width in each of the two directions to introduce the
drivers, and this gives us the required result for the
maximum increase in ares.s

This bound is once again Light, and the lower bound
can be proved using the layout of figure 3 with n/ 2 verti-
cal long lines sdded on with their heads ajong s disgonal.
Note that in this case, 8 or ( may be grester than 1/2,
and so the sres blow-up will be more than the square of
the origina! layout. In particular, if p=l, the sabove bound
ceases to hold. (This will be the case for s long driver
whose ares is proportional to the length of the wire it

drives, i.e., the natural design for a standard driver.) In
this case, the convergence of the system of equations (3)
for specific layouts depends on the constant k. I k21,
then, clearly, drivers cannol be introduced in any layout
containing a long bidirectional wire. In fact, for any fixed
value for k,, we can design layouts in whicl. drivers can-
not be introduced, as we show in the following theorem.

Theorem 4: If the driver of a wire of lehgth ! must be
embedded in a rectangle whose length is kl, for some
constant k. then there exist layouts in which drivers can-
not be introduced on alil long wires.

(1.n)o- 4n.n)

< >
{1.1) 5 b Qh(n.l)

n=6

figure 10
A layout to prove Theorem 4

Proof Consider the graph of figure 10. It is the same as
the one in figure 3. except that all long wires are b.direc-
tional. We will prove that. for n22/k, drivers cannot be
introduced on all long lines in this lsyout. As before, let
us write out the equution for each d,. For instance,

A=k (1, 4dy, tdmegt - - +dy)
‘.'k (lle"*d".!* v ‘d‘).

{where m={n/2)), and the equations for the other d,'s
can be writien out by inspection. Since this is a system
of linear equations, this can be rewritten in matrix form
as

Ad=kl,

where A is an nxn matrix of the coeflicients of the 4,'s, !
is & vector of the L 's, and 4 is & vector of the d,'s. We
need a solution of this system of equations with each d,
nonnegative. For this., we note that the matrix 4 is an
M-matrix when n<(2/k). and from the theory of such
matrices, it is simple to prove that the system of equa-
tions has a solution with all components of d nonnegsative
only whenn < 2/k [BP78).

For particular layouts, we may still obtain conver-
gence, but with a large ares penalty. For example, the
layout of section 3 (which has n2 mutual interaction
between drivers and wires) will require area }((1+¢&)™)
after the introduction of such drivers. This result is
easily verified from the recurrence relation for s, which,
in this case, is s,=(1+k)5.-;.

We pointed out in section 4 that the driver has a last
stage with a very wide channel thatl dominotes the area
of the driver. Thus such a driver will, indeed, be very
long. and have constant width. The introduction of such
a driver in the circuit cen be disastrous in terms of ares
blow-up (if not impossible). However, it should be possi-



ble to redesign the channel to occupy a more square
regior, possitly with some penalty in the tots! area
required. Thus, if the driver originally required area
©(L?). then this design might result in a driver of length
8(1*) and width O(1') with ©(1**!)>8(l7). but with
0<s.t<1. Jr such a case, drivers can always be intro-
duced in any lsyout of long wires with a polynomial blow-
up in area given by Theorem 3 (the degree of this polyno-
mial will be very high if 8 or ¢ is ciose to 1). In practice,
we expect driver designs in square areas with no extra
srca penalty, ancd this results in the squering of the area
in the worst case.

Finally, we look into the case of s rectangular VLS]
leyout in an nxn’ grid (nan’). As before, if each long
wire is ! units long, then the width of any driver is
O(l?/11-#)) by Corollary 1.2. By observation 1, the
number of wires in the layout is O(nn'/1)=0(A/1'),
where 4 is the area of the layout before the introduction
of drivers. }f {=0(n’), then we may have to make 2n
cuts along the longer side, increasing its length to
O(n-1P/0-2)), and similarly, 2n' cuts l]on, the shorter
side, increasing its length to O(n’'1?/(1-?)), Hence the
area increases from nn' to O(nn’' {®/0-2))= (4} (-9,
11 1=0(n’). then, since the number of wires in the layout
is 0(nn' /1), the number of cuts along the longer side is
also n> greater than O(nn'/ 1), so that the length of that
side increases to O((nn'/1)»/0-P)). The increase in
length of the shorter side remains O(n'-1#/(1?)) Hence
the ares increases . to no more than
o((an' /) n 1%/ 1-P)=0(AVU-P)), since 1=0(n) by
observation 4. Henze the worst case area expansion for
rectangular layouts due to the introduction of drivers is
no greater than that for square ones

To summarize, we have shown that

1) if the drivers described in section 4 can be embedded
in a sguare reg.on without extra area penalty, then in the
worst case, the area of a V1S] layout grows quadratically
with the introduction of drivers for long wires. This worst
case occurs when drivers require area proportional to
the length of the wire they drive (i.e., the standard
desigr.); when the layout i in an nxn square and bes
8/n) long wires of lengih 8(n) each; and when the intro-
duclicn of drivers requires B(n ) cuts of width 8(n ) in the
layout in each of the two directions.

2) if a driver requires a rectangular embedding, then the
wors{ case increase in arca is 8(4!/(1"P)), where the
longer side of a driver rectangle for a wire of length | is
©(i?) grid units long. It pa], then there exist layouts for
which drivers cannot be introduced.

7. Application to Other Layout Problems

The technique developed in the previous two sec-
tions can be used in other related problems in VLS. Con-
sider the following question:

Given a VLS/ layout, what is the glodal effect of making
many local spatial sxpansions that mutually interact”

The introduction of drivers for long lines is one
example of this problem. Another example is fault-
tclerant computing in VLS]. Von Neumann[vN58] has
suggested a method of constructing reliable combina-
torial circuitry using components tbhat bave a certain
probabdility of failure. The construction requires replica-
tion of the basic components many times.This method

does not carry over directly to VLS] circuits, since the
connecting wires bere are aiso likely to faii, and the pro-
bability of failure increases with the length of the wire.
This probability can be reduced by increasing the width.
It is generally accepted that a fault can occur anywhere
on the surface of a silicon wafer with a constant probabil-
ity, and thus, the occurrence of a fault can be modeled
as a random variable with a Poisson distribution. Under
this model, it can be shown that the probability of failure
along a wire can be bounded by any constant ¢>0 by
making the width of the wire proportional to the log of
the length. But if the width is increased after the circuit
is laid out (and this is the only logical way, since the the
lengths of wires in the layout cannot be known before the
circuit is laid out), then this will result in increasing the
lengths of olher wires, and it is not clear what the global
effect of many such local transformations is.

We analyze the general problem by assuming that,
in the worst case, a "cut” (as described in section 2)
would be required to meake any expansion of one dimen-
sion of an element in the layout. Thus, to introduce a
driver of length | and breadth b at the head of & wire, we
would require a cut of width ! perpendicular to the wire,
and a cut of width &, parallel to the wire, both at the
head of the wire, in order to accommodate the driver. Of
course, in particular layouts, it may so happen that com-
porents are sparse at this region, and so the driver can
be introduced as it is without any expansion of the lay-
out. But we are looking at worst-case situations, and we
will thus assume that the introduction of any element
can be achieved only by making cuts of the appropriate
widths. Similarly, for wide wires in feult-toicrant com-
puting, the width of a wire is increased to w by making a
cut of width w paraliel to the wire.

Our general construction is as follows:

0) Lay out the circuit (or assume that the circuit layout
is given).

1) Number the spatial elements that are to be varied
(usually this is a subset of the lengths and widths of the
lines, or the dimensions of processing elements or
drivers, but could conceivably include other objects) as
V,, Vs ' * Yy in some arbitrary order.

2) For each spatial element v,, identify the other ele-
ments v, that are made to expand by its presence. For
each such element, set 84=k, where v, is made to
expand £ times by the presence of v,.

3) The foliowing system of equetions defines the final
values of the v,'s:

”‘gl\(l\"'td‘«,v,). i=12. . .r,
J=3

where {, is a constent corresponding to the initia! value
of some linear dimension in the layout, and f, deter-
mines the functional dependence of v, on the v;'s. If, for
each f,, the behavior function g, is sublinear with break-
point 7, then an upper bound for the v, 's is given by R.
where

R=m‘u r,.

Examples:

1) For drivers embedded in e square. v, is the length of
e side of the driver of the ilh line, and L is the length of
the ith line, and f((2)=k 2P, for some constant k, and
for some p<1.

AT VR R R S R S F R ) - -
A - A A T A S R R
B PR S o et . '.-5'. o 1‘:1‘_"‘_‘.‘)-'-\U.» ‘e



»
«

i
'.'.f‘-'_n S
AL A
LA L

e

4

‘.'I' . .
R g0y,

-
148

TRy

| B I I 4 I}
PN

-~

\"&J‘u‘.ﬂ‘.‘.}

o
J_l

S Y
SAOLAN

L ¢

LA ,
AR "'-'.'h {

O [ WAL I

IR

L)
AP

P

p 8

-~

2) For fault-tolerant computing, v, is the width of the
ith lire, L is its length, and f((z)=k In =, for some con-

stant k. )

8. Conclusion o S 3

In {his peper we have analyzed the effect of intro-
ducing drivers to speed up signals along many long wires
in a VLS] layout. ¥We have shown that, under all but the
most naive of designs for a driver (i.e., the case when
drivers bave constant width, and occupy area propor-
tional to the jJength of the wire they drive), these drivers
can be introduced with only a polynomial increase in
ares. With the additional assumption that drivers can be
embedded in a square region, we-haveé shown that the
area at most squares by their introduction. results

, bave matching upper- and lower-bounds. We-| also

2w ~+_shewn an area-delay trade-of! in the design of drivers,

and’ we have generalized the upper-bound proof tech-
nique. Some open problems that remain are:

1) Given a VLSI circuit, is it possible to design a layout
for it 30 that the presence of many long wires is "minim-
ized" according to a suitably defined criterion? Some
work has been done on minimizing the length of the long-
est wire in a layout for certain classes of grapbhs. [PRS81]
and [RS81] heve derived bounds for trees and [BL82]
have extended the result to classes of graphs with
separator n1/2-¢ ¢>0 or Vn log*n.k20. Leiserson’s lay-
out technique [LB0) minimizes the maximum edgelength
for classes of graphs with separator n", r>1/2. Some
lower-bound results are presented in Leighton [L81]).
However, our results on drivers indicate that it is not the
presence of a single long wire that causes the worst-case
increzse in area, but rather the presence of many long
wires in a configuration that requires many cuts. Even
heuristics to prevent such undesirable configurations of
long lines should be very useful.

2) Is it possible to incorporate the presence of drivers in
our layout model, for exampie, by using nodes of variable
size, end can we obtain area-efficient layouts under this
model? Using such & model, we cen re-examine the
upper-bounds that bave been obtained for the layout
area of many common circuits. In particular, upper-
bounds for A7°.a>0, should be re-examined under the
context of area-expansion caused by drivers of long
wires,

3) The numerical solution of equation 2: In section 6, we
used the Brouwer fixed-point theorem to prove results
on the existence and worst-case behavior of the solution
of equation 2 under various assumptions. However, the
actual solution of the system of equations for particular
layouts still needs to be investigated.

4) Modeling poly lines in MOS technology: We heave
modeled the wire as a purely capacitive Josd. However,
poly lines have rather bigh resistance, and meay be
better modeled as disitributed RC-networks. At present,
the best that can be done for such structures is to use a
driver of constant size after each fixed interval of the
wire and this reduces the delay from 8(1%) to 8(1), where
l is the length of the poly line. It will be very useful to
find e better way to speed up signals along such wires.

Acknowiedgements ] am greatly indebted to Professor
Richerd Lipton for suggesting the probiem, for useful dis-
cussions and comments, and in particular, for drawing

-10-

RTINS S i S ey A Ay ,-—t‘!
St e e e, . B o

my atiention to the Brouwer fixed-point theorem. ] also
wish to acknowledge help from Andrea LePaugh in the
fleld of VLS] design, and from Bradley Dickinson in the
theory of M-matrices. | would like to thank all of the
above, and Kar] Leiberherr and Avi Wigderson for com-
ments that led to a better organization of the paper.

Refsrences

{B64] R. G. Barue, The Bements of Real Analywis, John Wiley and Sons,
Inc., New York,196¢.

[BP79) A. Berman and R. . Plemmons. Aonnsgetwe Matnces i the
Mathamaticel Scences, Academic Press, New York, 1976,

{BLA2] S. N. Bhait and C. E. Leiserson, “Minimizing the longes: edge ine
VLS! Jayout,” manuscript, Lab. for Computer Science, MiT, Cambridge,
Mam.

[BPP81} G. Bilardi, M. Pracchi, and F. P. Preparsia, "A eritique and
sppraisal of VLS| models of computstion,’ :in CH U CGenference on VLS/
Systems end Compuistions, H. T. Kung. Bob Sproull, and Guy Steee,
ods.. Oct. 1981, pp. 81-88.

[BK80) R. P. Brent and H. 7. Xung. “7he ckip complexity of binary arith-
metic.” in Proc. of the 120 Annual Symponum on ths Theory of Com-
puiing. Los Angeies, April 1080, pp. 180-200.

{CK81) B. Chazelle and L Monier, “A mode] of computation for Visl
with related complexity results.” in Proc. of the JXA Annual Sympo-
sium on ths Theory of Computing. Mey 1081, pg. 318-325.

[975] R. C. Jasger, "Comments on 'An opiimuzed ownput stage for MOS
tntegrated circuits'.” JEEE J. Selad Siate Qvrouris, June 3975, pr. 185
188.

{L81] F. T. Leighion, “New Jower bound teckniques for V.S1." sn Proc
&2nd Symp. en the Frundatwns of omputer Scaence, IEEE Compurer
Society, Oct. 1981, pp. 1-12.

[L80) C. £. Leisermon, “Ares eflicient graph embdeddings (for ViSI)," in
Proc. 213t Symp en the Foundations of Computer Scwencs, lE2E Com-
puter Soc.ety, Oct. 1980, pp. £270-2B).

{LL75]) H. C. Lin and L. W. Linholm, "An optmized output stage for MIS
integrated circwits,” IEEL J. Selsd Swats Qircwits, April 1675, pp. 106
110.

[MC80] C. A Mead and L C. Conway, Mmtvoduction o VLS Demgn,
AddisorWealey, Reading. Mass, 1980.

[MR79) C. A Mead and M. Rerr:, "Cos: and performance of VLS| comput-
ing structures.” JEEE J. Sokid State Qircwits. April 1979, pp. €55-462.
[PRsS81] M. 8. Paterson, W. L. Ruzxzo, and L Snyder, "Bounds on
minimaz edge Jengta for comp.ete binary trees.” in Proc. of the I3A
Annual Symposium en the Meory of dmputing. Mey 1981, pp. 283
£299.

[RS81] ¥. L Ruzzo and L. Spyder, “Minimwm edge length planar embed-
ding of trees.” in CW U Oynference on ViS/ Systams end Oomputations,
H. T. Kung. Bob Sproull, and Guy Steele, eds, Oct. 1981, pp. 116123
[TeC] C. D. Thompsan, A Complexity Theory for VLSI Pa.D. dimesin-
tion, Department ¢f Computer Science, Carnegie-Melion Unvers..y.
1980

{T81) C. D. Thompeon, "The VLS! complexity of sortang.” in O ./ Confer
ence on V1S! Syat and Oomput ns, H. T. Kung. Bot Sproul, and
Guy Steele. ods.. Oct 1981, pp. 108-118.

{vNS6] J. von Neumann, “Probabilisiic legics and the syrihexs of reir-
sble orgenisms from unreliable companents.” 1n Automais Stushes, C
E. Shannon and .. McCarthy, eds., Annals ¢f Nathamaiuwal Studwes No
8, Princeton University Press. Princeton. NI, 1058,

[va0] J. Vuilem:n, “A combinatorial limit to the compuling powe- of
VLS! circuite,” in Proc 25t Symp en the Feundoticns of Computer
Scisnce, [EEE Computer Society, Oct. 1980, pp. 204-300.







